Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
4e7a56c1
Commit
4e7a56c1
authored
Nov 16, 2015
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add discrete and product CMRA.
parent
3f784972
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
89 additions
and
0 deletions
+89
-0
iris/cmra.v
iris/cmra.v
+89
-0
No files found.
iris/cmra.v
View file @
4e7a56c1
...
...
@@ -98,5 +98,94 @@ Proof.
Qed
.
End
cmra
.
Instance
cmra_preserving_id
`
{
CMRA
A
}
:
CMRAPreserving
(@
id
A
).
Proof
.
by
split
.
Qed
.
(* Also via [cmra_cofe; cofe_equivalence] *)
Hint
Cut
[!*
;
ra_equivalence
;
cmra_ra
]
:
typeclass_instances
.
(** Discrete *)
Section
discrete
.
Context
`
{
ra
:
RA
A
}.
Existing
Instances
discrete_dist
discrete_compl
.
Let
discrete_cofe'
:
Cofe
A
:
=
discrete_cofe
.
Instance
discrete_validN
:
ValidN
A
:
=
λ
n
x
,
match
n
with
0
=>
True
|
S
n
=>
valid
x
end
.
Instance
discrete_cmra
:
CMRA
A
.
Proof
.
split
;
try
by
(
destruct
ra
;
auto
).
*
by
intros
[|
n
]
;
try
apply
ra_op_proper
.
*
by
intros
[|
n
]
;
try
apply
ra_unit_proper
.
*
by
intros
[|
n
]
;
try
apply
ra_valid_proper
.
*
by
intros
[|
n
]
;
try
apply
ra_minus_proper
.
*
by
intros
[|
n
].
*
intros
x
;
split
;
intros
Hvalid
.
by
intros
[|
n
].
apply
(
Hvalid
1
).
*
by
intros
[|
n
]
;
try
apply
ra_valid_op_l
.
Qed
.
Instance
discrete_extend
:
CMRAExtend
A
.
Proof
.
intros
x
y1
y2
[|
n
]
??
;
[|
by
exists
(
y1
,
y2
)].
by
exists
(
x
,
unit
x
)
;
simpl
;
rewrite
ra_unit_r
.
Qed
.
Definition
discreteC
:
cmraT
:
=
CMRAT
A
.
End
discrete
.
(** Product *)
Instance
prod_op
`
{
Op
A
,
Op
B
}
:
Op
(
A
*
B
)
:
=
λ
x
y
,
(
x
.
1
⋅
y
.
1
,
x
.
2
⋅
y
.
2
).
Instance
prod_empty
`
{
Empty
A
,
Empty
B
}
:
Empty
(
A
*
B
)
:
=
(
∅
,
∅
).
Instance
prod_unit
`
{
Unit
A
,
Unit
B
}
:
Unit
(
A
*
B
)
:
=
λ
x
,
(
unit
(
x
.
1
),
unit
(
x
.
2
)).
Instance
prod_valid
`
{
Valid
A
,
Valid
B
}
:
Valid
(
A
*
B
)
:
=
λ
x
,
valid
(
x
.
1
)
∧
valid
(
x
.
2
).
Instance
prod_validN
`
{
ValidN
A
,
ValidN
B
}
:
ValidN
(
A
*
B
)
:
=
λ
n
x
,
validN
n
(
x
.
1
)
∧
validN
n
(
x
.
2
).
Instance
prod_included
`
{
Included
A
,
Included
B
}
:
Included
(
A
*
B
)
:
=
prod_relation
(
≼
)
(
≼
).
Instance
prod_minus
`
{
Minus
A
,
Minus
B
}
:
Minus
(
A
*
B
)
:
=
λ
x
y
,
(
x
.
1
⩪
y
.
1
,
x
.
2
⩪
y
.
2
).
Instance
prod_cmra
`
{
CMRA
A
,
CMRA
B
}
:
CMRA
(
A
*
B
).
Proof
.
split
;
try
apply
_
.
*
by
intros
n
x
y1
y2
[
Hy1
Hy2
]
;
split
;
simpl
in
*
;
rewrite
?Hy1
,
?Hy2
.
*
by
intros
n
y1
y2
[
Hy1
Hy2
]
;
split
;
simpl
in
*
;
rewrite
?Hy1
,
?Hy2
.
*
by
intros
n
y1
y2
[
Hy1
Hy2
]
[??]
;
split
;
simpl
in
*
;
rewrite
<-
?Hy1
,
<-
?Hy2
.
*
by
intros
n
x1
x2
[
Hx1
Hx2
]
y1
y2
[
Hy1
Hy2
]
;
split
;
simpl
in
*
;
rewrite
?Hx1
,
?Hx2
,
?Hy1
,
?Hy2
.
*
by
intros
x
y1
y2
[
Hy1
Hy2
]
[??]
;
split
;
simpl
in
*
;
rewrite
<-
?Hy1
,
<-
?Hy2
.
*
split
;
apply
cmra_valid_0
.
*
by
intros
n
x
[??]
;
split
;
apply
cmra_valid_S
.
*
intros
x
;
split
;
[
by
intros
[??]
n
;
split
;
apply
cmra_valid_validN
|].
intros
Hvalid
;
split
;
apply
cmra_valid_validN
;
intros
n
;
apply
Hvalid
.
*
split
;
simpl
;
apply
(
associative
_
).
*
split
;
simpl
;
apply
(
commutative
_
).
*
split
;
simpl
;
apply
ra_unit_l
.
*
split
;
simpl
;
apply
ra_unit_idempotent
.
*
split
;
apply
ra_unit_weaken
.
*
intros
n
x
y
[??]
;
split
;
simpl
in
*
;
eapply
cmra_valid_op_l
;
eauto
.
*
split
;
apply
cmra_included_l
.
*
by
intros
x
y
[??]
;
split
;
apply
cmra_op_minus
.
Qed
.
Instance
prod_ra_empty
`
{
RAEmpty
A
,
RAEmpty
B
}
:
RAEmpty
(
A
*
B
).
Proof
.
repeat
split
;
simpl
;
repeat
apply
ra_empty_valid
;
repeat
apply
(
left_id
_
_
).
Qed
.
Instance
prod_cmra_extend
`
{
CMRAExtend
A
,
CMRAExtend
B
}
:
CMRAExtend
(
A
*
B
).
Proof
.
intros
x
y1
y2
n
[??]
[??]
;
simpl
in
*.
destruct
(
cmra_extend_op
(
x
.
1
)
(
y1
.
1
)
(
y2
.
1
)
n
)
as
(
z1
&?&?&?)
;
auto
.
destruct
(
cmra_extend_op
(
x
.
2
)
(
y1
.
2
)
(
y2
.
2
)
n
)
as
(
z2
&?&?&?)
;
auto
.
by
exists
((
z1
.
1
,
z2
.
1
),(
z1
.
2
,
z2
.
2
)).
Qed
.
Canonical
Structure
prodRA
(
A
B
:
cmraT
)
:
cmraT
:
=
CMRAT
(
A
*
B
).
Instance
prod_map_cmra_preserving
`
{
CMRA
A
,
CMRA
A'
,
CMRA
B
,
CMRA
B'
}
(
f
:
A
→
A'
)
(
g
:
B
→
B'
)
`
{!
CMRAPreserving
f
,
!
CMRAPreserving
g
}
:
CMRAPreserving
(
prod_map
f
g
).
Proof
.
split
.
*
by
intros
x1
x2
[??]
;
split
;
simpl
;
apply
included_preserving
.
*
by
intros
n
x
[??]
;
split
;
simpl
;
apply
validN_preserving
.
Qed
.
Definition
prodRA_map
{
A
A'
B
B'
:
cmraT
}
(
f
:
A
-
n
>
A'
)
(
g
:
B
-
n
>
B'
)
:
prodRA
A
B
-
n
>
prodRA
A'
B'
:
=
CofeMor
(
prod_map
f
g
:
prodRA
A
B
→
prodRA
A'
B'
).
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment