Commit 4877b210 authored by Ralf Jung's avatar Ralf Jung

counterexample for linear invariants

parent 84804f05
......@@ -215,3 +215,55 @@ Module inv. Section inv.
iApply "HN". iApply saved_A. done.
End inv. End inv.
(** This proves that if we have linear impredicative invariants, we can still
drop arbitrary resources (i.e., we can "defeat" linearity). *)
Module linear. Section linear.
Context {PROP: sbi}.
Implicit Types P : PROP.
(** Assumptions. *)
(** We have the mask-changing update modality (two classes: empty/full mask) *)
Inductive mask := M0 | M1.
Context (fupd : mask mask PROP PROP).
Arguments fupd _ _ _%I.
Hypothesis fupd_intro : E P, P fupd E E P.
Hypothesis fupd_mono : E1 E2 P Q, (P Q) fupd E1 E2 P fupd E1 E2 Q.
Hypothesis fupd_fupd : E1 E2 E3 P, fupd E1 E2 (fupd E2 E3 P) fupd E1 E3 P.
Hypothesis fupd_frame_l : E1 E2 P Q, P fupd E1 E2 Q fupd E1 E2 (P Q).
(** We have cancellable invariants. (Really they would have fractions at
[cinv_own] but we do not need that. They would also have a name matching
the [mask] type, but we do not need that either.) *)
Context (gname : Type) (cinv : gname PROP PROP) (cinv_own : gname PROP).
Hypothesis cinv_alloc_open : P,
(fupd M1 M0 ( γ, cinv γ P cinv_own γ ( P - fupd M0 M1 emp)))%I.
(** Some general lemmas and proof mode compatibility. *)
Instance fupd_mono' E1 E2 : Proper (() ==> ()) (fupd E1 E2).
Proof. intros P Q ?. by apply fupd_mono. Qed.
Instance fupd_proper E1 E2 : Proper (() ==> ()) (fupd E1 E2).
intros P Q; rewrite !bi.equiv_spec=> -[??]; split; by apply fupd_mono.
Lemma fupd_frame_r E1 E2 P Q : fupd E1 E2 P Q fupd E1 E2 (P Q).
Proof. by rewrite comm fupd_frame_l comm. Qed.
Global Instance elim_fupd_fupd p E1 E2 E3 P Q :
ElimModal True p false (fupd E1 E2 P) P (fupd E1 E3 Q) (fupd E2 E3 Q).
by rewrite /ElimModal bi.intuitionistically_if_elim
fupd_frame_r bi.wand_elim_r fupd_fupd.
(** Counterexample: now we can make any resource disappear. *)
Lemma leak P : P - fupd M1 M1 emp.
iIntros "HP".
set (INV := ( γ Q, cinv γ Q cinv_own γ P)%I).
iMod (cinv_alloc_open INV) as (γ) "(Hinv & Htok & Hclose)".
iApply "Hclose". iNext. iExists γ, _. iFrame.
End linear. End linear.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment