Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
4468acd9
Commit
4468acd9
authored
Dec 15, 2015
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Misc changes to cofes.
parent
53fa71ca
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
10 additions
and
9 deletions
+10
9
iris/cofe.v
iris/cofe.v
+10
9
No files found.
iris/cofe.v
View file @
4468acd9
...
...
@@ 64,8 +64,8 @@ Section cofe.
Global
Instance
dist_ne
n
:
Proper
(
dist
n
==>
dist
n
==>
iff
)
(
dist
n
).
Proof
.
intros
x1
x2
?
y1
y2
?
;
split
;
intros
.
*
by
transitivity
x1
;
[
done
]
;
transitivity
y1
.
*
by
transitivity
x2
;
[
done
]
;
transitivity
y2
.
*
by
transitivity
x1
;
[

transitivity
y1
]
.
*
by
transitivity
x2
;
[

transitivity
y2
]
.
Qed
.
Global
Instance
dist_proper
n
:
Proper
((
≡
)
==>
(
≡
)
==>
iff
)
(
dist
n
).
Proof
.
...
...
@@ 84,7 +84,7 @@ Section cofe.
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
f

100
.
Proof
.
unfold
Proper
,
respectful
;
setoid_rewrite
equiv_dist
.
by
intros
x1
x2
Hx
y1
y2
Hy
n
;
rewrite
Hx
,
Hy
.
by
intros
x1
x2
Hx
y1
y2
Hy
n
;
rewrite
(
Hx
n
)
,
(
Hy
n
)
.
Qed
.
Lemma
compl_ne
(
c1
c2
:
chain
A
)
n
:
c1
n
={
n
}=
c2
n
→
compl
c1
={
n
}=
compl
c2
.
Proof
.
intros
.
by
rewrite
(
conv_compl
c1
n
),
(
conv_compl
c2
n
).
Qed
.
...
...
@@ 140,7 +140,7 @@ End fixpoint.
Global
Opaque
fixpoint
.
(** Function space *)
Structure
cofeMor
(
A
B
:
cofeT
)
:
Type
:
=
CofeMor
{
Record
cofeMor
(
A
B
:
cofeT
)
:
Type
:
=
CofeMor
{
cofe_mor_car
:
>
A
→
B
;
cofe_mor_ne
n
:
Proper
(
dist
n
==>
dist
n
)
cofe_mor_car
}.
...
...
@@ 305,18 +305,19 @@ Section later.
Qed
.
Canonical
Structure
laterC
(
A
:
cofeT
)
:
cofeT
:
=
CofeT
(
later
A
).
Instance
later_fmap
:
FMap
later
:
=
λ
A
B
f
x
,
Later
(
f
(
later_car
x
)).
Definition
later_map
{
A
B
}
(
f
:
A
→
B
)
(
x
:
later
A
)
:
later
B
:
=
Later
(
f
(
later_car
x
)).
Instance
later_fmap_ne
`
{
Cofe
A
,
Cofe
B
}
(
f
:
A
→
B
)
:
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
)
→
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(
fmap
f
:
later
A
→
later
B
).
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(
later_map
f
).
Proof
.
intros
Hf
[
n
]
[
x
]
[
y
]
?
;
do
2
red
;
simpl
.
done
.
by
apply
Hf
.
Qed
.
Lemma
later_fmap_id
{
A
}
(
x
:
later
A
)
:
id
<$>
x
=
x
.
Lemma
later_fmap_id
{
A
}
(
x
:
later
A
)
:
later_map
id
x
=
x
.
Proof
.
by
destruct
x
.
Qed
.
Lemma
later_fmap_compose
{
A
B
C
}
(
f
:
A
→
B
)
(
g
:
B
→
C
)
(
x
:
later
A
)
:
g
∘
f
<$>
x
=
g
<$>
f
<$>
x
.
later_map
(
g
∘
f
)
x
=
later_map
g
(
later_map
f
x
)
.
Proof
.
by
destruct
x
.
Qed
.
Definition
laterC_map
{
A
B
}
(
f
:
A

n
>
B
)
:
laterC
A

n
>
laterC
B
:
=
CofeMor
(
fmap
f
:
laterC
A
→
laterC
B
).
CofeMor
(
later_map
f
).
Instance
laterC_map_contractive
(
A
B
:
cofeT
)
:
Contractive
(@
laterC_map
A
B
).
Proof
.
intros
n
f
g
Hf
n'
;
apply
Hf
.
Qed
.
End
later
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment