Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
116
Issues
116
List
Boards
Labels
Service Desk
Milestones
Merge Requests
23
Merge Requests
23
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
3b9a9685
Commit
3b9a9685
authored
May 06, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Declare FSASplit instance for FSA.
parent
cd5096b7
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
5 additions
and
2 deletions
+5
-2
proofmode/pviewshifts.v
proofmode/pviewshifts.v
+5
-2
No files found.
proofmode/pviewshifts.v
View file @
3b9a9685
...
...
@@ -23,7 +23,7 @@ Proof.
Qed
.
Global
Instance
frame_pvs
E1
E2
R
P
mQ
:
Frame
R
P
mQ
→
Frame
R
(|={
E1
,
E2
}=>
P
)
(
Some
(|={
E1
,
E2
}=>
from_option
True
mQ
))%
I
.
Frame
R
(|={
E1
,
E2
}=>
P
)
(
Some
(|={
E1
,
E2
}=>
if
mQ
is
Some
Q
then
Q
else
True
))%
I
.
Proof
.
rewrite
/
Frame
=><-.
by
rewrite
pvs_frame_l
.
Qed
.
Global
Instance
to_wand_pvs
E1
E2
R
P
Q
:
ToWand
R
P
Q
→
ToWand
R
(|={
E1
,
E2
}=>
P
)
(|={
E1
,
E2
}=>
Q
).
...
...
@@ -32,12 +32,15 @@ Proof. rewrite /ToWand=>->. apply wand_intro_l. by rewrite pvs_wand_r. Qed.
Class
FSASplit
{
A
}
(
P
:
iProp
Λ
Σ
)
(
E
:
coPset
)
(
fsa
:
FSA
Λ
Σ
A
)
(
fsaV
:
Prop
)
(
Φ
:
A
→
iProp
Λ
Σ
)
:
=
{
fsa_split
:
fsa
E
Φ
⊢
P
;
fsa_split_fsa
:
>
FrameShiftAssertion
fsaV
fsa
;
fsa_split_
is_
fsa
:
>
FrameShiftAssertion
fsaV
fsa
;
}.
Global
Arguments
fsa_split
{
_
}
_
_
_
_
_
{
_
}.
Global
Instance
fsa_split_pvs
E
P
:
FSASplit
(|={
E
}=>
P
)%
I
E
pvs_fsa
True
(
λ
_
,
P
).
Proof
.
split
.
done
.
apply
_
.
Qed
.
Global
Instance
fsa_split_fsa
{
A
}
(
fsa
:
FSA
Λ
Σ
A
)
E
Φ
:
FrameShiftAssertion
fsaV
fsa
→
FSASplit
(
fsa
E
Φ
)
E
fsa
fsaV
Φ
.
Proof
.
done
.
Qed
.
Lemma
tac_pvs_intro
Δ
E
Q
:
Δ
⊢
Q
→
Δ
⊢
|={
E
}=>
Q
.
Proof
.
intros
->.
apply
pvs_intro
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment