Commit 3b0c15c3 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Use normal function arrow → for `saved_pred_own`.

parent 2a1af810
......@@ -90,19 +90,20 @@ Qed.
Notation savedPredG Σ A := (savedAnythingG Σ (A -c> )).
Notation savedPredΣ A := (savedAnythingΣ (A -c> )).
Definition saved_pred_own `{savedPredG Σ A} (γ : gname) (Φ : A -c> iProp Σ) :=
Definition saved_pred_own `{savedPredG Σ A} (γ : gname) (Φ : A iProp Σ) :=
saved_anything_own (F := A -c> ) γ (CofeMor Next Φ).
Instance saved_pred_own_contractive `{savedPredG Σ A} γ : Contractive (saved_pred_own γ).
Instance saved_pred_own_contractive `{savedPredG Σ A} γ :
Contractive (saved_pred_own γ : (A -c> iProp Σ) iProp Σ).
Proof.
solve_proper_core ltac:(fun _ => first [ intros ?; progress simpl | by auto | f_contractive | f_equiv ]).
Qed.
Lemma saved_pred_alloc_strong `{savedPredG Σ A} (G : gset gname) (Φ : A -c> iProp Σ) :
Lemma saved_pred_alloc_strong `{savedPredG Σ A} (G : gset gname) (Φ : A iProp Σ) :
(|==> γ, ⌜γ G saved_pred_own γ Φ)%I.
Proof. iApply saved_anything_alloc_strong. Qed.
Lemma saved_pred_alloc `{savedPredG Σ A} (Φ : A -c> iProp Σ) :
Lemma saved_pred_alloc `{savedPredG Σ A} (Φ : A iProp Σ) :
(|==> γ, saved_pred_own γ Φ)%I.
Proof. iApply saved_anything_alloc. Qed.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment