Commit 3a49be22 authored by Ralf Jung's avatar Ralf Jung

make it compile with Coq 8.5-rc1

parent bb095111
......@@ -599,7 +599,7 @@ Section finite.
Lemma empty_finite : set_finite .
Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Proof. exists [x]; intros y ->/elem_of_singleton; left. Qed.
Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
Lemma union_finite X Y : set_finite X set_finite Y set_finite (X Y).
Proof.
intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
......@@ -614,9 +614,9 @@ End finite.
Section more_finite.
Context `{Collection A B}.
Lemma intersection_finite_l X Y : set_finite X set_finite (X Y).
Proof. intros [l ?]; exists l; intros x [??]/elem_of_intersection; auto. Qed.
Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
Lemma intersection_finite_r X Y : set_finite Y set_finite (X Y).
Proof. intros [l ?]; exists l; intros x [??]/elem_of_intersection; auto. Qed.
Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
Lemma difference_finite X Y : set_finite X set_finite (X Y).
Proof. intros [l ?]; exists l; intros x [??]/elem_of_difference; auto. Qed.
Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
End more_finite.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment