Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
3077c6c6
Commit
3077c6c6
authored
Aug 09, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
more spacing fixes for better grouping
parent
59a8f5bf
Pipeline
#2584
passed with stage
in 4 minutes and 13 seconds
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
3 additions
and
5 deletions
+3
-5
program_logic/auth.v
program_logic/auth.v
+1
-2
program_logic/saved_prop.v
program_logic/saved_prop.v
+1
-1
program_logic/sts.v
program_logic/sts.v
+1
-2
No files found.
program_logic/auth.v
View file @
3077c6c6
...
...
@@ -9,9 +9,8 @@ Class authG Σ (A : ucmraT) := AuthG {
auth_inG
:
>
inG
Σ
(
authR
A
)
;
auth_discrete
:
>
CMRADiscrete
A
;
}.
(* The global functor we need and register that they match. *)
Definition
auth
Σ
(
A
:
ucmraT
)
:
gFunctors
:
=
#[
GFunctor
(
constRF
(
authR
A
))
].
Instance
subG_auth
Σ
Σ
A
:
subG
(
auth
Σ
A
)
Σ
→
CMRADiscrete
A
→
authG
Σ
A
.
Proof
.
intros
?%
subG_inG
?.
by
split
.
Qed
.
...
...
program_logic/saved_prop.v
View file @
3077c6c6
...
...
@@ -5,9 +5,9 @@ Import uPred.
Class
savedPropG
(
Σ
:
gFunctors
)
(
F
:
cFunctor
)
:
=
saved_prop_inG
:
>
inG
Σ
(
agreeR
(
laterC
(
F
(
iPreProp
Σ
)))).
Definition
savedProp
Σ
(
F
:
cFunctor
)
:
gFunctors
:
=
#[
GFunctor
(
agreeRF
(
▶
F
))
].
Instance
subG_savedProp
Σ
{
Σ
F
}
:
subG
(
savedProp
Σ
F
)
Σ
→
savedPropG
Σ
F
.
Proof
.
apply
subG_inG
.
Qed
.
...
...
program_logic/sts.v
View file @
3077c6c6
...
...
@@ -8,9 +8,8 @@ Class stsG Σ (sts : stsT) := StsG {
sts_inG
:
>
inG
Σ
(
stsR
sts
)
;
sts_inhabited
:
>
Inhabited
(
sts
.
state
sts
)
;
}.
(* The global functor we need and register that they match. *)
Definition
sts
Σ
(
sts
:
stsT
)
:
gFunctors
:
=
#[
GFunctor
(
constRF
(
stsR
sts
))
].
Instance
subG_sts
Σ
Σ
sts
:
subG
(
sts
Σ
sts
)
Σ
→
Inhabited
(
sts
.
state
sts
)
→
stsG
Σ
sts
.
Proof
.
intros
?%
subG_inG
?.
by
split
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment