Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
122
Issues
122
List
Boards
Labels
Service Desk
Milestones
Merge Requests
18
Merge Requests
18
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
2bc882dc
Commit
2bc882dc
authored
Sep 20, 2016
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Validity lemmas for deletion in gmaps.
parent
bf59ec9e
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
0 deletions
+6
-0
algebra/gmap.v
algebra/gmap.v
+6
-0
No files found.
algebra/gmap.v
View file @
2bc882dc
...
...
@@ -202,6 +202,7 @@ Lemma lookup_validN_Some n m i x : ✓{n} m → m !! i ≡{n}≡ Some x → ✓{
Proof
.
by
move
=>
/(
_
i
)
Hm
Hi
;
move
:
Hm
;
rewrite
Hi
.
Qed
.
Lemma
lookup_valid_Some
m
i
x
:
✓
m
→
m
!!
i
≡
Some
x
→
✓
x
.
Proof
.
move
=>
Hm
Hi
.
move
:
(
Hm
i
).
by
rewrite
Hi
.
Qed
.
Lemma
insert_validN
n
m
i
x
:
✓
{
n
}
x
→
✓
{
n
}
m
→
✓
{
n
}
<[
i
:
=
x
]>
m
.
Proof
.
by
intros
??
j
;
destruct
(
decide
(
i
=
j
))
;
simplify_map_eq
.
Qed
.
Lemma
insert_valid
m
i
x
:
✓
x
→
✓
m
→
✓
<[
i
:
=
x
]>
m
.
...
...
@@ -214,6 +215,11 @@ Qed.
Lemma
singleton_valid
i
x
:
✓
({[
i
:
=
x
]}
:
gmap
K
A
)
↔
✓
x
.
Proof
.
rewrite
!
cmra_valid_validN
.
by
setoid_rewrite
singleton_validN
.
Qed
.
Lemma
delete_validN
n
m
i
:
✓
{
n
}
m
→
✓
{
n
}
(
delete
i
m
).
Proof
.
intros
Hm
j
;
destruct
(
decide
(
i
=
j
))
;
by
simplify_map_eq
.
Qed
.
Lemma
delete_valid
m
i
:
✓
m
→
✓
(
delete
i
m
).
Proof
.
intros
Hm
j
;
destruct
(
decide
(
i
=
j
))
;
by
simplify_map_eq
.
Qed
.
Lemma
insert_singleton_op
m
i
x
:
m
!!
i
=
None
→
<[
i
:
=
x
]>
m
=
{[
i
:
=
x
]}
⋅
m
.
Proof
.
intros
Hi
;
apply
map_eq
=>
j
;
destruct
(
decide
(
i
=
j
))
as
[->|].
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment