Commit 25ab3a07 authored by Robbert Krebbers's avatar Robbert Krebbers

Comments about the type classes used for `tac_modal_intro`.

parent 6b1af5f3
......@@ -1064,6 +1064,21 @@ Proof.
Qed.
End bi_tactics.
(** The following _private_ classes are used internally by [tac_modal_intro] /
[iModIntro] to transform the proofmode environments when introducing a modality.
The class [TransformPersistentEnv M C Γin Γout] is used to transform the
persistent environment using a type class [C].
Inputs:
- [Γin] : the original environment.
- [M] : the modality that the environment should be transformed into.
- [C : PROP → PROP → Prop] : a type class that is used to transform the
individual hypotheses. The first parameter is the input and the second
parameter is the output.
Outputs:
- [Γout] : the resulting environment. *)
Class TransformPersistentEnv {PROP1 PROP2} (M : modality PROP1 PROP2)
(C : PROP2 PROP1 Prop) (Γin : env PROP2) (Γout : env PROP1) := {
transform_persistent_env :
......@@ -1074,6 +1089,19 @@ Class TransformPersistentEnv {PROP1 PROP2} (M : modality PROP1 PROP2)
transform_persistent_env_dom i : Γin !! i = None Γout !! i = None;
}.
(* The class [TransformPersistentEnv M C Γin Γout filtered] is used to transform
the persistent environment using a type class [C].
Inputs:
- [Γin] : the original environment.
- [M] : the modality that the environment should be transformed into.
- [C : PROP → PROP → Prop] : a type class that is used to transform the
individual hypotheses. The first parameter is the input and the second
parameter is the output.
Outputs:
- [Γout] : the resulting environment.
- [filtered] : a Boolean indicating if non-affine hypotheses have been cleared. *)
Class TransformSpatialEnv {PROP1 PROP2} (M : modality PROP1 PROP2)
(C : PROP2 PROP1 Prop) (Γin : env PROP2) (Γout : env PROP1)
(filtered : bool) := {
......@@ -1084,6 +1112,18 @@ Class TransformSpatialEnv {PROP1 PROP2} (M : modality PROP1 PROP2)
transform_spatial_env_dom i : Γin !! i = None Γout !! i = None;
}.
(* The class [IntoModalPersistentEnv M Γin Γout s] is used to transform the
persistent environment with respect to the behavior needed to introduce [M] as
given by [s : modality_intro_spec PROP1 PROP2].
Inputs:
- [Γin] : the original environment.
- [M] : the modality that the environment should be transformed into.
- [s] : the [modality_intro_spec] a specification of the way the hypotheses
should be transformed.
Outputs:
- [Γout] : the resulting environment. *)
Inductive IntoModalPersistentEnv {PROP2} : {PROP1} (M : modality PROP1 PROP2)
(Γin : env PROP2) (Γout : env PROP1), modality_intro_spec PROP1 PROP2 Prop :=
| MIEnvIsEmpty_persistent {PROP1} (M : modality PROP1 PROP2) :
......@@ -1103,6 +1143,19 @@ Existing Class IntoModalPersistentEnv.
Existing Instances MIEnvIsEmpty_persistent MIEnvForall_persistent
MIEnvTransform_persistent MIEnvClear_persistent MIEnvId_persistent.
(* The class [IntoModalSpatialEnv M Γin Γout s] is used to transform the spatial
environment with respect to the behavior needed to introduce [M] as given by
[s : modality_intro_spec PROP1 PROP2].
Inputs:
- [Γin] : the original environment.
- [M] : the modality that the environment should be transformed into.
- [s] : the [modality_intro_spec] a specification of the way the hypotheses
should be transformed.
Outputs:
- [Γout] : the resulting environment.
- [filtered] : a Boolean indicating if non-affine hypotheses have been cleared. *)
Inductive IntoModalSpatialEnv {PROP2} : {PROP1} (M : modality PROP1 PROP2)
(Γin : env PROP2) (Γout : env PROP1), modality_intro_spec PROP1 PROP2 bool Prop :=
| MIEnvIsEmpty_spatial {PROP1} (M : modality PROP1 PROP2) :
......@@ -1278,8 +1331,9 @@ Proof.
Qed.
(** * Later *)
(** Although the `iNext` tactic no longer exists, much of its infrastructure is
still used by other tactics, e.g. the symbolic execution tactics. *)
(** The classes [MaybeIntoLaterNEnvs] and [MaybeIntoLaterNEnvs] were used by
[iNext] in the past, but are currently _only_ used by other tactics that need
to introduce laters, e.g. the symbolic execution tactics. *)
Class MaybeIntoLaterNEnv (n : nat) (Γ1 Γ2 : env PROP) :=
into_laterN_env : env_Forall2 (MaybeIntoLaterN false n) Γ1 Γ2.
Class MaybeIntoLaterNEnvs (n : nat) (Δ1 Δ2 : envs PROP) := {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment