Commit 2523157b authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Iris namespaces.

parent 2420784d
Require Export prelude.countable prelude.co_pset.
Definition namespace := list positive.
Definition nnil : namespace := nil.
Definition ndot `{Countable A} (I : namespace) (x : A) : namespace :=
encode x :: I.
Definition nclose (I : namespace) : coPset := coPset_suffixes (encode I).
Instance ndot_injective `{Countable A} : Injective2 (=) (=) (=) (@ndot A _ _).
Proof. by intros I1 x1 I2 x2 ?; simplify_equality. Qed.
Definition nclose_nnil : nclose nnil = coPset_all.
Proof. by apply (sig_eq_pi _). Qed.
Definition nclose_subseteq `{Countable A} I x : nclose (ndot I x) nclose I.
intros p; unfold nclose; rewrite !elem_coPset_suffixes; intros [q ->].
destruct (list_encode_suffix I (ndot I x)) as [q' ?]; [by exists [encode x]|].
by exists (q ++ q')%positive; rewrite <-(associative_L _); f_equal.
Definition nclose_disjoint `{Countable A} I (x y : A) :
x y nclose (ndot I x) nclose (ndot I y) = .
intros Hxy; apply elem_of_equiv_empty_L; intros p; unfold nclose, ndot.
rewrite elem_of_intersection, !elem_coPset_suffixes; intros [[q ->] [q' Hq]].
apply Hxy, (injective encode), (injective encode_nat); revert Hq.
rewrite !(list_encode_cons (encode _)).
rewrite !(associative_L _), (injective_iff (++ _)%positive); simpl.
generalize (encode_nat (encode y)).
induction (encode_nat (encode x)); intros [|?] ?; f_equal'; naive_solver.
\ No newline at end of file
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment