Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
7
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
1b172b22
Commit
1b172b22
authored
Feb 24, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
move generic upred tactics from wp_tactics to upred_tactics
parent
0ef28164
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
98 additions
and
95 deletions
+98
-95
algebra/upred_tactics.v
algebra/upred_tactics.v
+97
-1
heap_lang/wp_tactics.v
heap_lang/wp_tactics.v
+1
-94
No files found.
algebra/upred_tactics.v
View file @
1b172b22
From
algebra
Require
Export
upred
.
From
algebra
Require
Export
upred_big_op
.
Import
uPred
.
Module
upred_reflection
.
Section
upred_reflection
.
Context
{
M
:
cmraT
}.
...
...
@@ -89,7 +90,7 @@ Module upred_reflection. Section upred_reflection.
Proof
.
intros
??.
rewrite
!
eval_flatten
.
rewrite
(
flatten_cancel
e1
e1'
ns
)
//
(
flatten_cancel
e2
e2'
ns
)
//
;
csimpl
.
rewrite
!
fmap_app
!
big_sep_app
.
apply
uPred
.
sep_mono_r
.
rewrite
!
fmap_app
!
big_sep_app
.
apply
sep_mono_r
.
Qed
.
Class
Quote
(
Σ
1
Σ
2
:
list
(
uPred
M
))
(
P
:
uPred
M
)
(
e
:
expr
)
:
=
{}.
...
...
@@ -144,3 +145,98 @@ Tactic Notation "ecancel" open_constr(Ps) :=
|
|-
@
uPred_entails
?M
_
_
=>
close
Ps
(@
nil
(
uPred
M
))
ltac
:
(
fun
Qs
=>
cancel
Qs
)
end
.
(* Some more generic uPred tactics.
TODO: Naming. *)
Ltac
revert_intros
tac
:
=
lazymatch
goal
with
|
|-
∀
_
,
_
=>
let
H
:
=
fresh
in
intro
H
;
revert_intros
tac
;
revert
H
|
|-
_
=>
tac
end
.
(** Assumes a goal of the shape P ⊑ ▷ Q. Alterantively, if Q
is built of ★, ∧, ∨ with ▷ in all branches; that will work, too.
Will turn this goal into P ⊑ Q and strip ▷ in P below ★, ∧, ∨. *)
Ltac
u_strip_later
:
=
let
rec
strip
:
=
lazymatch
goal
with
|
|-
(
_
★
_
)
⊑
▷
_
=>
etrans
;
last
(
eapply
equiv_entails_sym
,
later_sep
)
;
apply
sep_mono
;
strip
|
|-
(
_
∧
_
)
⊑
▷
_
=>
etrans
;
last
(
eapply
equiv_entails_sym
,
later_and
)
;
apply
sep_mono
;
strip
|
|-
(
_
∨
_
)
⊑
▷
_
=>
etrans
;
last
(
eapply
equiv_entails_sym
,
later_or
)
;
apply
sep_mono
;
strip
|
|-
▷
_
⊑
▷
_
=>
apply
later_mono
;
reflexivity
|
|-
_
⊑
▷
_
=>
apply
later_intro
;
reflexivity
end
in
let
rec
shape_Q
:
=
lazymatch
goal
with
|
|-
_
⊑
(
_
★
_
)
=>
(* Force the later on the LHS to be top-level, matching laters
below ★ on the RHS *)
etrans
;
first
(
apply
equiv_entails
,
later_sep
;
reflexivity
)
;
(* Match the arm recursively *)
apply
sep_mono
;
shape_Q
|
|-
_
⊑
(
_
∧
_
)
=>
etrans
;
first
(
apply
equiv_entails
,
later_and
;
reflexivity
)
;
apply
sep_mono
;
shape_Q
|
|-
_
⊑
(
_
∨
_
)
=>
etrans
;
first
(
apply
equiv_entails
,
later_or
;
reflexivity
)
;
apply
sep_mono
;
shape_Q
|
|-
_
⊑
▷
_
=>
apply
later_mono
;
reflexivity
(* We fail if we don't find laters in all branches. *)
end
in
revert_intros
ltac
:
(
etrans
;
[|
shape_Q
]
;
etrans
;
last
eapply
later_mono
;
first
solve
[
strip
]).
(** Transforms a goal of the form ∀ ..., ?0... → ?1 ⊑ ?2
into True ⊑ ∀..., ■?0... → ?1 → ?2, applies tac, and
the moves all the assumptions back. *)
Ltac
u_revert_all
:
=
lazymatch
goal
with
|
|-
∀
_
,
_
=>
let
H
:
=
fresh
in
intro
H
;
u_revert_all
;
(* TODO: Really, we should distinguish based on whether this is a
dependent function type or not. Right now, we distinguish based
on the sort of the argument, which is suboptimal. *)
first
[
apply
(
const_intro_impl
_
_
_
H
)
;
clear
H
|
revert
H
;
apply
forall_elim'
]
|
|-
?C
⊑
_
=>
trans
(
True
∧
C
)%
I
;
first
(
apply
equiv_entails_sym
,
left_id
,
_;
reflexivity
)
;
apply
impl_elim_l'
end
.
(** This starts on a goal of the form ∀ ..., ?0... → ?1 ⊑ ?2.
It applies löb where all the Coq assumptions have been turned into logical
assumptions, then moves all the Coq assumptions back out to the context,
applies [tac] on the goal (now of the form _ ⊑ _), and then reverts the
Coq assumption so that we end up with the same shape as where we started,
but with an additional assumption ★-ed to the context *)
Ltac
u_l
ö
b
tac
:
=
u_revert_all
;
(* Add a box *)
etrans
;
last
(
eapply
always_elim
;
reflexivity
)
;
(* We now have a goal for the form True ⊑ P, with the "original" conclusion
being locked. *)
apply
l
ö
b_strong
;
etransitivity
;
first
(
apply
equiv_entails
,
left_id
,
_;
reflexivity
)
;
apply
:
always_intro
;
(* Now introduce again all the things that we reverted, and at the bottom,
do the work *)
let
rec
go
:
=
lazymatch
goal
with
|
|-
_
⊑
(
∀
_
,
_
)
=>
apply
forall_intro
;
let
H
:
=
fresh
in
intro
H
;
go
;
revert
H
|
|-
_
⊑
(
■
_
→
_
)
=>
apply
impl_intro_l
,
const_elim_l
;
let
H
:
=
fresh
in
intro
H
;
go
;
revert
H
(* This is the "bottom" of the goal, where we see the impl introduced
by u_revert_all as well as the ▷ from löb_strong and the □ we added. *)
|
|-
▷
□
?R
⊑
(
?L
→
_
)
=>
apply
impl_intro_l
;
trans
(
L
★
▷
□
R
)%
I
;
first
(
eapply
equiv_entails
,
always_and_sep_r
,
_;
reflexivity
)
;
tac
end
in
go
.
heap_lang/wp_tactics.v
View file @
1b172b22
From
algebra
Require
Export
upred_tactics
.
From
heap_lang
Require
Export
tactics
substitution
.
Import
uPred
.
(* TODO: The next few tactics are not wp-specific at all. They should move elsewhere. *)
Ltac
revert_intros
tac
:
=
lazymatch
goal
with
|
|-
∀
_
,
_
=>
let
H
:
=
fresh
in
intro
H
;
revert_intros
tac
;
revert
H
|
|-
_
=>
tac
end
.
(** Assumes a goal of the shape P ⊑ ▷ Q. Alterantively, if Q
is built of ★, ∧, ∨ with ▷ in all branches; that will work, too.
Will turn this goal into P ⊑ Q and strip ▷ in P below ★, ∧, ∨. *)
Ltac
u_strip_later
:
=
let
rec
strip
:
=
lazymatch
goal
with
|
|-
(
_
★
_
)
⊑
▷
_
=>
etrans
;
last
(
eapply
equiv_entails_sym
,
later_sep
)
;
apply
sep_mono
;
strip
|
|-
(
_
∧
_
)
⊑
▷
_
=>
etrans
;
last
(
eapply
equiv_entails_sym
,
later_and
)
;
apply
sep_mono
;
strip
|
|-
(
_
∨
_
)
⊑
▷
_
=>
etrans
;
last
(
eapply
equiv_entails_sym
,
later_or
)
;
apply
sep_mono
;
strip
|
|-
▷
_
⊑
▷
_
=>
apply
later_mono
;
reflexivity
|
|-
_
⊑
▷
_
=>
apply
later_intro
;
reflexivity
end
in
let
rec
shape_Q
:
=
lazymatch
goal
with
|
|-
_
⊑
(
_
★
_
)
=>
(* Force the later on the LHS to be top-level, matching laters
below ★ on the RHS *)
etrans
;
first
(
apply
equiv_entails
,
later_sep
;
reflexivity
)
;
(* Match the arm recursively *)
apply
sep_mono
;
shape_Q
|
|-
_
⊑
(
_
∧
_
)
=>
etrans
;
first
(
apply
equiv_entails
,
later_and
;
reflexivity
)
;
apply
sep_mono
;
shape_Q
|
|-
_
⊑
(
_
∨
_
)
=>
etrans
;
first
(
apply
equiv_entails
,
later_or
;
reflexivity
)
;
apply
sep_mono
;
shape_Q
|
|-
_
⊑
▷
_
=>
apply
later_mono
;
reflexivity
(* We fail if we don't find laters in all branches. *)
end
in
revert_intros
ltac
:
(
etrans
;
[|
shape_Q
]
;
etrans
;
last
eapply
later_mono
;
first
solve
[
strip
]).
(** Transforms a goal of the form ∀ ..., ?0... → ?1 ⊑ ?2
into True ⊑ ∀..., ■?0... → ?1 → ?2, applies tac, and
the moves all the assumptions back. *)
Ltac
u_revert_all
:
=
lazymatch
goal
with
|
|-
∀
_
,
_
=>
let
H
:
=
fresh
in
intro
H
;
u_revert_all
;
(* TODO: Really, we should distinguish based on whether this is a
dependent function type or not. Right now, we distinguish based
on the sort of the argument, which is suboptimal. *)
first
[
apply
(
const_intro_impl
_
_
_
H
)
;
clear
H
|
revert
H
;
apply
forall_elim'
]
|
|-
?C
⊑
_
=>
trans
(
True
∧
C
)%
I
;
first
(
apply
equiv_entails_sym
,
left_id
,
_;
reflexivity
)
;
apply
impl_elim_l'
end
.
(** This starts on a goal of the form ∀ ..., ?0... → ?1 ⊑ ?2.
It applies löb where all the Coq assumptions have been turned into logical
assumptions, then moves all the Coq assumptions back out to the context,
applies [tac] on the goal (now of the form _ ⊑ _), and then reverts the
Coq assumption so that we end up with the same shape as where we started,
but with an additional assumption ★-ed to the context *)
Ltac
u_l
ö
b
tac
:
=
u_revert_all
;
(* Add a box *)
etrans
;
last
(
eapply
always_elim
;
reflexivity
)
;
(* We now have a goal for the form True ⊑ P, with the "original" conclusion
being locked. *)
apply
l
ö
b_strong
;
etransitivity
;
first
(
apply
equiv_entails
,
left_id
,
_;
reflexivity
)
;
apply
:
always_intro
;
(* Now introduce again all the things that we reverted, and at the bottom,
do the work *)
let
rec
go
:
=
lazymatch
goal
with
|
|-
_
⊑
(
∀
_
,
_
)
=>
apply
forall_intro
;
let
H
:
=
fresh
in
intro
H
;
go
;
revert
H
|
|-
_
⊑
(
■
_
→
_
)
=>
apply
impl_intro_l
,
const_elim_l
;
let
H
:
=
fresh
in
intro
H
;
go
;
revert
H
(* This is the "bottom" of the goal, where we see the impl introduced
by u_revert_all as well as the ▷ from löb_strong and the □ we added. *)
|
|-
▷
□
?R
⊑
(
?L
→
_
)
=>
apply
impl_intro_l
;
trans
(
L
★
▷
□
R
)%
I
;
first
(
eapply
equiv_entails
,
always_and_sep_r
,
_;
reflexivity
)
;
tac
end
in
go
.
(** wp-specific helper tactics *)
(* First try to productively strip off laters; if that fails, at least
cosmetically get rid of laters in the conclusion. *)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment