Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Iris
Iris
Commits
13011e3c
Commit
13011e3c
authored
Feb 15, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
basics of Sts construction
parent
f8f48666
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
34 additions
and
1 deletion
+34
-1
_CoqProject
_CoqProject
+2
-1
program_logic/sts.v
program_logic/sts.v
+32
-0
No files found.
_CoqProject
View file @
13011e3c
...
...
@@ -65,8 +65,9 @@ program_logic/resources.v
program_logic/hoare.v
program_logic/language.v
program_logic/tests.v
program_logic/auth.v
program_logic/ghost_ownership.v
program_logic/auth.v
program_logic/sts.v
heap_lang/heap_lang.v
heap_lang/tactics.v
heap_lang/lifting.v
...
...
program_logic/sts.v
0 → 100644
View file @
13011e3c
From
algebra
Require
Export
sts
.
From
program_logic
Require
Export
invariants
ghost_ownership
.
Import
uPred
.
Class
StsInG
Λ
Σ
(
i
:
gid
)
{
A
B
}
(
R
:
relation
A
)
(
tok
:
A
→
set
B
)
:
=
{
sts_inG
:
>
InG
Λ
Σ
i
(
stsRA
R
tok
)
;
}.
Section
definitions
.
Context
{
Λ
Σ
A
B
}
(
i
:
gid
)
(
R
:
relation
A
)
(
tok
:
A
→
set
B
)
`
{!
StsInG
Λ
Σ
i
R
tok
}
(
γ
:
gname
).
Definition
sts_inv
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:
=
(
∃
s
,
own
i
γ
(
sts_auth
R
tok
s
set_all
)
★
φ
s
)%
I
.
Definition
sts_states
(
S
:
set
A
)
(
T
:
set
B
)
:
iPropG
Λ
Σ
:
=
(
■
sts
.
closed
R
tok
S
T
∧
own
i
γ
(
sts_frag
R
tok
S
T
))%
I
.
Definition
sts_state
(
s
:
A
)
(
T
:
set
B
)
:
iPropG
Λ
Σ
:
=
own
i
γ
(
sts_frag
R
tok
(
sts
.
up
R
tok
s
T
)
T
).
Definition
sts_ctx
(
N
:
namespace
)
(
φ
:
A
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:
=
inv
N
(
sts_inv
φ
).
End
definitions
.
Instance
:
Params
(@
sts_inv
)
9
.
Instance
:
Params
(@
sts_states
)
9
.
Instance
:
Params
(@
sts_ctx
)
10
.
Section
sts
.
Context
`
{
StsInG
Λ
Σ
StsI
(
A
:
=
A
)
R
tok
}.
Context
(
φ
:
A
→
iPropG
Λ
Σ
).
Implicit
Types
N
:
namespace
.
Implicit
Types
P
Q
R
:
iPropG
Λ
Σ
.
Implicit
Types
γ
:
gname
.
End
sts
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment