Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
I
Iris
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
112
Issues
112
List
Boards
Labels
Service Desk
Milestones
Merge Requests
20
Merge Requests
20
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Iris
Iris
Commits
0b7e25c2
Commit
0b7e25c2
authored
Feb 10, 2016
by
Ralf Jung
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
make auth_closing less stupid
parent
05b7229d
Changes
2
Hide whitespace changes
Inline
Sidebyside
Showing
2 changed files
with
7 additions
and
10 deletions
+7
10
algebra/auth.v
algebra/auth.v
+5
1
program_logic/auth.v
program_logic/auth.v
+2
9
No files found.
algebra/auth.v
View file @
0b7e25c2
...
...
@@ 147,8 +147,12 @@ Proof. done. Qed.
Lemma
auth_both_op
a
b
:
Auth
(
Excl
a
)
b
≡
●
a
⋅
◯
b
.
Proof
.
by
rewrite
/
op
/
auth_op
/=
left_id
.
Qed
.
(* FIXME tentative name. Or maybe remove this notion entirely. *)
Definition
auth_step
a
a'
b
b'
:
=
∀
n
af
,
✓
{
n
}
a
→
a
≡
{
n
}
≡
a'
⋅
af
→
b
≡
{
n
}
≡
b'
⋅
af
∧
✓
{
n
}
b
.
Lemma
auth_update
a
a'
b
b'
:
(
∀
n
af
,
✓
{
n
}
a
→
a
≡
{
n
}
≡
a'
⋅
af
→
b
≡
{
n
}
≡
b'
⋅
af
∧
✓
{
n
}
b
)
→
auth_step
a
a'
b
b'
→
●
a
⋅
◯
a'
~~>
●
b
⋅
◯
b'
.
Proof
.
move
=>
Hab
[[?
]
bf1
]
n
//
=>[[
bf2
Ha
]
?]
;
do
2
red
;
simpl
in
*.
...
...
program_logic/auth.v
View file @
0b7e25c2
...
...
@@ 58,14 +58,8 @@ Section auth.
by
rewrite
sep_elim_l
.
Qed
.
(* TODO: This notion should probably be defined in algebra/,
with instances proven for the important constructions. *)
Definition
auth_step
a
b
:
=
(
∀
n
a'
af
,
✓
{
n
}
(
a
⋅
a'
)
→
a
⋅
a'
≡
{
n
}
≡
af
⋅
a
→
b
⋅
a'
≡
{
n
}
≡
b
⋅
af
∧
✓
{
n
}
(
b
⋅
a'
)).
Lemma
auth_closing
a
a'
b
γ
:
auth_step
a
b
→
auth_step
(
a
⋅
a'
)
a
(
b
⋅
a'
)
b
→
(
φ
(
b
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
⊑
pvs
N
N
(
auth_inv
γ
★
auth_own
γ
b
).
Proof
.
...
...
@@ 73,8 +67,7 @@ Section auth.
rewrite
[(
_
★
φ
_
)%
I
]
commutative

associative
.
rewrite

pvs_frame_l
.
apply
sep_mono
;
first
done
.
rewrite

own_op
.
apply
own_update
.
apply
auth_update
=>
n
af
Ha
Heq
.
apply
Hstep
;
first
done
.
by
rewrite
[
af
⋅
_
]
commutative
.
by
apply
auth_update
.
Qed
.
End
auth
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment