cmra.v 43.8 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Robbert Krebbers's avatar
Robbert Krebbers committed
3 4
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
5 6 7 8 9 10 11 12 13

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
14
Hint Extern 0 (_  _) => reflexivity.
15 16
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
17 18
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
19
Notation "✓{ n } x" := (validN n x)
20
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22 23
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
24
Notation "✓ x" := (valid x) (at level 20) : C_scope.
25

26
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
27
Notation "x ≼{ n } y" := (includedN n x y)
28
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
29
Instance: Params (@includedN) 4.
30
Hint Extern 0 (_ {_} _) => reflexivity.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  (* setoids *)
34
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
37
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  (* valid *)
39
  mixin_cmra_valid_validN x :  x   n, {n} x;
40
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  (* monoid *)
42 43
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46 47
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  mixin_cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
48
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
49 50 51
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
53

Robbert Krebbers's avatar
Robbert Krebbers committed
54
(** Bundeled version *)
55
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57 58 59
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
60
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  cmra_op : Op cmra_car;
62
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
63
  cmra_validN : ValidN cmra_car;
64
  cmra_cofe_mixin : CofeMixin cmra_car;
65
  cmra_mixin : CMRAMixin cmra_car;
66
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
67
}.
68 69
Arguments CMRAT' _ {_ _ _ _ _ _ _} _ _ _.
Notation CMRAT A m m' := (CMRAT' A m m' A).
70 71 72 73
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Arguments cmra_pcore : simpl never.
75
Arguments cmra_op : simpl never.
76
Arguments cmra_valid : simpl never.
77 78 79
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
Add Printing Constructor cmraT.
81 82 83 84
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
85
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87
Canonical Structure cmra_cofeC.

88 89 90 91 92 93
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
97 98
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
99 100
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
101 102
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
103 104 105 106
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108 109 110 111 112 113
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
  Proof. apply (mixin_cmra_pcore_preserving _ (cmra_mixin A)). Qed.
114 115
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
116
  Lemma cmra_extend n x y1 y2 :
117 118
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }.
119
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
120 121
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
122 123 124 125 126 127 128 129
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.

130
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
131 132
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
133

Robbert Krebbers's avatar
Robbert Krebbers committed
134 135 136 137 138 139 140 141 142 143 144
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

145
(** * CMRAs with a unit element *)
146
(** We use the notation ∅ because for most instances (maps, sets, etc) the
147
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
149 150
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152
  mixin_ucmra_unit_timeless : Timeless ;
  mixin_ucmra_pcore_unit : pcore   Some 
153
}.
154

155
Structure ucmraT := UCMRAT' {
156 157 158 159
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
  ucmra_compl : Compl ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  ucmra_pcore : PCore ucmra_car;
161 162 163 164 165 166
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
  ucmra_cofe_mixin : CofeMixin ucmra_car;
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
167
  ucmra_mixin : UCMRAMixin ucmra_car;
168
  _ : Type;
169
}.
170 171
Arguments UCMRAT' _ {_ _ _ _ _ _ _ _} _ _ _ _.
Notation UCMRAT A m m' m'' := (UCMRAT' A m m' m'' A).
172 173 174 175
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Arguments ucmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
Arguments ucmra_pcore : simpl never.
177 178 179 180 181 182 183
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
Arguments ucmra_cofe_mixin : simpl never.
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
184
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A).
Canonical Structure ucmra_cofeC.
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
  CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A).
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_timeless : Timeless ( : A).
  Proof. apply (mixin_ucmra_unit_timeless _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
201 202
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
203
End ucmra_mixin.
204

205
(** * Discrete CMRAs *)
206
Class CMRADiscrete (A : cmraT) := {
207 208 209 210
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
211
(** * Morphisms *)
212
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
213 214 215
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
  included_preserving x y : x  y  f x  f y
216
}.
217 218
Arguments validN_preserving {_ _} _ {_} _ _ _.
Arguments included_preserving {_ _} _ {_} _ _ _.
219

Robbert Krebbers's avatar
Robbert Krebbers committed
220
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
221
Section cmra.
222
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
Implicit Types x y z : A.
224
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
225

226
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
227 228 229 230 231 232 233 234 235
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
236
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
237 238 239
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
240
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
241 242 243 244
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
245 246 247 248 249 250 251 252
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
253 254 255 256
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276 277 278
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
279

Robbert Krebbers's avatar
Robbert Krebbers committed
280 281 282 283
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

284
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
285
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
286 287 288
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
289
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
290
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
291 292 293
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
294
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
295 296 297 298 299 300 301 302
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
303 304 305 306
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
307 308 309 310 311 312 313 314
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
315

316 317 318 319
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

320
(** ** Exclusive elements *)
321 322 323 324 325 326 327 328
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
Proof. intros ?%cmra_validN_le%exclusive0_l; auto with arith. Qed.
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
329

330
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
331 332
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
334
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
336
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Global Instance cmra_included_trans: Transitive (@included A _ _).
338
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
340
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
342
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
344
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
345

Robbert Krebbers's avatar
Robbert Krebbers committed
346
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
347
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
349 350 351 352 353 354 355
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
356
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
357
Lemma cmra_included_r x y : y  x  y.
358
Proof. rewrite (comm op); apply cmra_included_l. Qed.
359

Robbert Krebbers's avatar
Robbert Krebbers committed
360 361 362 363 364 365 366 367 368
Lemma cmra_pcore_preserving' x y cx :
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
  destruct (cmra_pcore_preserving x y cx') as (cy&->&?); auto.
  exists cy; by rewrite Hcx.
Qed.
Lemma cmra_pcore_preservingN' n x y cx :
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
369
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
370 371 372 373 374 375 376
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
  destruct (cmra_pcore_preserving x (x  z) cx')
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
378 379
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
380
Lemma cmra_preservingN_l n x y z : x {n} y  z  x {n} z  y.
381
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
382
Lemma cmra_preserving_l x y z : x  y  z  x  z  y.
383
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
384
Lemma cmra_preservingN_r n x y z : x {n} y  x  z {n} y  z.
385
Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
386
Lemma cmra_preserving_r x y z : x  y  x  z  y  z.
387
Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
388

Robbert Krebbers's avatar
Robbert Krebbers committed
389
Lemma cmra_included_dist_l n x1 x2 x1' :
390
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
Proof.
392 393
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
Qed.
395

Robbert Krebbers's avatar
Robbert Krebbers committed
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
(** ** Total core *)
Section total_core.
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
  Lemma cmra_core_preserving x y : x  y  core x  core y.
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
    destruct (cmra_pcore_preserving x y cx) as (cy&Hcy&?); auto.
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
425 426
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Lemma cmra_core_preservingN n x y : x {n} y  core x {n} core y.
  Proof.
    intros [z ->].
    apply cmra_included_includedN, cmra_core_preserving, cmra_included_l.
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
464
(** ** Timeless *)
465
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
466 467
Proof.
  intros ?? [x' ?].
468
  destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *.
469
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
470
Qed.
471
Lemma cmra_timeless_included_r n x y : Timeless y  x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
472
Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed.
473
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
474
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
475 476
Proof.
  intros ??? z Hz.
477
  destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *.
478
  { rewrite -?Hz. by apply cmra_valid_validN. }
479
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
480
Qed.
481

482 483 484 485 486 487 488 489
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
  split; first by apply cmra_included_includedN.
491 492
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
493 494
End cmra.

495 496
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_inhabited : Inhabited A := populate .

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
    intros x. destruct (cmra_pcore_preserving'  x ) as (cx&->&?);
      eauto using ucmra_unit_least, (persistent ).
  Qed.
518
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
Hint Immediate cmra_unit_total.

(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }).
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
551

552
(** * Properties about monotone functions *)
553
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
554
Proof. repeat split; by try apply _. Qed.
555 556
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
557 558
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
  - apply _. 
560
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
561
  - move=> x y Hxy /=. by apply included_preserving, included_preserving.
562
Qed.
563

564 565
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
566 567
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
  Lemma includedN_preserving n x y : x {n} y  f x {n} f y.
568
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
569
    intros [z ->].
570
    apply cmra_included_includedN, (included_preserving f), cmra_included_l.
571
  Qed.
572
  Lemma valid_preserving x :  x   f x.
573 574 575
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

576 577
(** Functors *)
Structure rFunctor := RFunctor {
578
  rFunctor_car : cofeT  cofeT  cmraT;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
Structure urFunctor := URFunctor {
  urFunctor_car : cofeT  cofeT  ucmraT;
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A.
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

635 636 637 638 639 640 641 642 643 644 645 646 647
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
648
  Lemma cmra_transport_core x : T (core x) = core (T x).
649
  Proof. by destruct H. Qed.
650
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
651
  Proof. by destruct H. Qed.
652
  Lemma cmra_transport_valid x :  T x   x.
653 654 655
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
656 657
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
658 659
End cmra_transport.

660 661
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
662
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
663
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
664 665 666 667
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
668
  (* monoid *)
669 670
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
671 672 673 674
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  ra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
675
  ra_valid_op_l x y :  (x  y)   x
676 677
}.

678
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
679
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
680 681
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
682

683
  Instance discrete_validN : ValidN A := λ n x,  x.
684
  Definition discrete_cmra_mixin : CMRAMixin A.
685
  Proof.
686
    destruct ra_mix; split; try done.
687
    - intros x; split; first done. by move=> /(_ 0).
688
    - intros n x y1 y2 ??; by exists (y1,y2).
689 690 691
  Qed.
End discrete.

692 693 694 695 696
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
Notation discreteLeibnizR A ra_mix :=
  (CMRAT A (@discrete_cofe_mixin _ equivL _) (discrete_cmra_mixin ra_mix)).

Robbert Krebbers's avatar
Robbert Krebbers committed
697
Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A,
698 699 700
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
Section ra_total.
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_proper :  (x : A), Proper (() ==> ()) (op x)).
  Context (core_proper: Proper (() ==> ()) (@core A _)).
  Context (valid_proper : Proper (() ==> impl) (@valid A _)).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (valid_op_l :  x y : A,  (x  y)   x).
  Lemma ra_total_mixin : RAMixin A.
  Proof.
    split; auto.
    - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End ra_total.

726 727 728
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
729
  Instance unit_validN : ValidN () := λ n x, True.
Robbert Krebbers's avatar
Robbert Krebbers committed
730
  Instance unit_pcore : PCore () := λ x, Some x.
731
  Instance unit_op : Op () := λ x y, ().
732
  Lemma unit_cmra_mixin : CMRAMixin ().
Robbert Krebbers's avatar
Robbert Krebbers committed
733
  Proof. apply discrete_cmra_mixin, ra_total_mixin; by eauto. Qed.
734
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
735 736 737 738 739 740 741

  Instance unit_empty : Empty () := ().
  Lemma unit_ucmra_mixin : UCMRAMixin ().
  Proof. done. Qed.
  Canonical Structure unitUR : ucmraT :=
    UCMRAT () unit_cofe_mixin unit_cmra_mixin unit_ucmra_mixin.

742
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
743
  Proof. done. Qed.
744
  Global Instance unit_persistent (x : ()) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
745
  Proof. by constructor. Qed.
746
End unit.
747

Robbert Krebbers's avatar
Robbert Krebbers committed
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
(** ** Natural numbers *)
Section nat.
  Instance nat_valid : Valid nat := λ x, True.
  Instance nat_validN : ValidN nat := λ n x, True.
  Instance nat_pcore : PCore nat := λ x, Some 0.
  Instance nat_op : Op nat := plus.
  Lemma nat_included (x y : nat) : x  y  x  y.
  Proof.
    split.
    - intros [z ->]; unfold op, nat_op; lia.
    - exists (y - x). by apply le_plus_minus.
  Qed.
  Lemma nat_cmra_mixin : CMRAMixin nat.
  Proof.
    apply discrete_cmra_mixin, ra_total_mixin; try by eauto.
    - solve_proper.
    - intros x y z. apply Nat.add_assoc.
    - intros x y. apply Nat.add_comm.
    - by exists 0.
  Qed.
  Canonical Structure natR : cmraT :=
    CMRAT nat (@discrete_cofe_mixin _ equivL _) nat_cmra_mixin.

  Instance nat_empty : Empty nat := 0.
  Lemma nat_ucmra_mixin : UCMRAMixin nat.
  Proof. split; apply _ || done. Qed.
  Canonical Structure natUR : ucmraT :=
    UCMRAT nat (@discrete_cofe_mixin _ equivL _) nat_cmra_mixin nat_ucmra_mixin.

  Global Instance nat_cmra_discrete : CMRADiscrete natR.
  Proof. constructor; apply _ || done. Qed.
  Global Instance nat_persistent (x : ()) : Persistent x.
  Proof. by constructor. Qed.
End nat.

783
(** ** Product *)
784 785
Section prod.
  Context {A B : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
786 787 788
  Local Arguments pcore _ _ !_ /.
  Local Arguments cmra_pcore _ !_/.

789
  Instance prod_op : Op (A * B) := λ x y, (x.1  y.1, x.2  y.2).
Robbert Krebbers's avatar
Robbert Krebbers committed
790 791 792
  Instance prod_pcore : PCore (A * B) := λ x,
    c1  pcore (x.1); c2  pcore (x.2); Some (c1, c2).
  Arguments prod_pcore !_ /.
793
  Instance prod_valid : Valid (A * B) := λ x,  x.1   x.2.
794
  Instance prod_validN : ValidN (A * B) := λ n x, {n} x.1  {n} x.2.
795

Robbert Krebbers's avatar
Robbert Krebbers committed
796 797 798 799 800 801 802 803 804 805 806 807
  Lemma prod_pcore_Some (x cx : A * B) :
    pcore x = Some cx  pcore (x.1) = Some (cx.1)  pcore (x.2) = Some (cx.2).
  Proof. destruct x, cx; by intuition simplify_option_eq. Qed.
  Lemma prod_pcore_Some' (x cx : A * B) :
    pcore x  Some cx  pcore (x.1)  Some (cx.1)  pcore (x.2)  Some (cx.2).
  Proof.
    split; [by intros (cx'&[-> ->]%prod_pcore_Some&->)%equiv_Some_inv_r'|].
    rewrite {3}/pcore /prod_pcore. (* TODO: use setoid rewrite *)
    intros [Hx1 Hx2]; inversion_clear Hx1; simpl; inversion_clear Hx2.
    by constructor.
  Qed.

808 809 810 811 812 813 814 815 816 817
  Lemma prod_included (x y : A * B) : x  y  x.1  y.1  x.2  y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
  Lemma prod_includedN (x y : A * B) n : x {n} y  x.1 {n} y.1  x.2 {n} y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
818

819 820 821
  Definition prod_cmra_mixin : CMRAMixin (A * B).
  Proof.
    split; try apply _.
822
    - by intros n x y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2.
Robbert Krebbers's avatar
Robbert Krebbers committed
823 824 825 826
    - intros n x y cx; setoid_rewrite prod_pcore_Some=> -[??] [??].
      destruct (cmra_pcore_ne n (x.1) (y.1) (cx.1)) as (z1&->&?); auto.
      destruct (cmra_pcore_ne n (x.2) (y.2) (cx.2)) as (z2&->&?); auto.
      exists (z1,z2); repeat constructor; auto.
827
    - by intros n y1 y2 [Hy1 Hy2] [??]; split; rewrite /= -?Hy1 -?Hy2.
828 829 830
    - intros x; split.
      + intros [??] n; split; by apply cmra_valid_validN.
      + intros Hxy; split; apply cmra_valid_validN=> n; apply Hxy.
831 832 833
    - by intros n x [??]; split; apply cmra_validN_S.
    - by split; rewrite /= assoc.
    - by split; rewrite /= comm.
Robbert Krebbers's avatar
Robbert Krebbers committed
834 835 836 837 838 839 840 841
    - intros x y [??]%prod_pcore_Some;
        constructor; simpl; eauto using cmra_pcore_l.
    - intros x y; rewrite prod_pcore_Some prod_pcore_Some'.
      naive_solver eauto using cmra_pcore_idemp.
    - intros x y cx; rewrite prod_included prod_pcore_Some=> -[??] [??].
      destruct (cmra_pcore_preserving (x.1) (y.1) (cx.1)) as (z1&?&?); auto.
      destruct (cmra_pcore_preserving (x.2) (y.2) (cx.2)) as (z2&?&?); auto.
      exists (z1,z2). by rewrite prod_included prod_pcore_Some.
842
    - intros n x y [??]; split; simpl in *; eauto using cmra_validN_op_l.
843 844 845 846
    - intros n x y1 y2 [??] [??]; simpl in *.
      destruct (cmra_extend n (x.1) (y1.1) (y2.1)) as (z1&?&?&?); auto.
      destruct (cmra_extend n (x.2) (y1.2) (y2.2)) as (z2&?&?&?); auto.
      by exists ((z1.1,z2.1),(z1.2,z2.2)).
847
  Qed.
848
  Canonical Structure prodR :=
849
    CMRAT (A * B) prod_cofe_mixin prod_cmra_mixin.
850

Robbert Krebbers's avatar
Robbert Krebbers committed
851
  Lemma pair_op (a a' : A) (b b' : B) : (a, b)  (a', b') = (a  a', b  b').
852 853
  Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
854 855 856 857 858 859
  Global Instance prod_cmra_total : CMRATotal A  CMRATotal B  CMRATotal prodR.
  Proof.
    intros H1 H2 [a b]. destruct (H1 a) as [ca ?], (H2 b) as [cb ?].
    exists (ca,cb); by simplify_option_eq.
  Qed.

860
  Global Instance prod_cmra_discrete :
861
    CMRADiscrete A  CMRADiscrete B  CMRADiscrete prodR.
862 863
  Proof. split. apply _. by intros ? []; split; apply cmra_discrete_valid. Qed.

864 865
  Global Instance pair_persistent x y :
    Persistent x  Persistent y  Persistent (x,y).
Robbert Krebbers's avatar
Robbert Krebbers committed
866
  Proof. by rewrite /Persistent prod_pcore_Some'. Qed.
867

868
  Global Instance pair_exclusive_l x y : Exclusive x  Exclusive (x,y).
869
  Proof. by intros ?[][?%exclusive0_l]. Qed.
870
  Global Instance pair_exclusive_r x y : Exclusive y  Exclusive (x,y).
871
  Proof. by intros ?[][??%exclusive0_l]. Qed.
872
End prod.
Robbert Krebbers's avatar
Robbert Krebbers committed
873

874
Arguments prodR : clear implicits.
875

876 877 878 879 880 881 882 883 884 885
Section prod_unit.
  Context {A B : ucmraT}.

  Instance prod_empty `{Empty A, Empty B} : Empty (A * B) := (, ).
  Lemma prod_ucmra_mixin : UCMRAMixin (A * B).
  Proof.
    split.
    - split; apply ucmra_unit_valid.
    - by split; rewrite /=left_id.
    - by intros ? [??]; split; apply (timeless _).
Robbert Krebbers's avatar
Robbert Krebbers committed
886
    - rewrite prod_pcore_Some'; split; apply (persistent _).
887 888 889 890 891
  Qed.
  Canonical Structure prodUR :=
    UCMRAT (A * B) prod_cofe_mixin prod_cmra_mixin prod_ucmra_mixin.

  Lemma pair_split (x : A) (y : B) : (x, y)  (x, )  (, y).
892
  Proof. by rewrite pair_op left_id right_id. Qed.
893 894 895 896
End prod_unit.

Arguments prodUR : clear implicits.

897 898
Instance prod_map_cmra_monotone {A A' B B' : cmraT} (f : A  A') (g : B  B') :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (prod_map f g).