iris.v 72.4 KB
Newer Older
1
Require Import world_prop core_lang lang masks.
2
Require Import RecDom.PCM RecDom.UPred RecDom.BI RecDom.PreoMet RecDom.Finmap.
3

4
Module Iris (RL : PCM_T) (C : CORE_LANG).
5

6
  Module Import L  := Lang C.
7
  Module Import R <: PCM_T.
8
    Definition res := (pcm_res_ex state * RL.res)%type.
9 10 11 12 13 14
    Instance res_op   : PCM_op res := _.
    Instance res_unit : PCM_unit res := _.
    Instance res_pcm  : PCM res := _.
  End R.
  Module Import WP := WorldProp R.

15 16 17
  Delimit Scope iris_scope with iris.
  Local Open Scope iris_scope.

18 19 20 21 22 23 24 25 26 27 28 29 30
  (** The final thing we'd like to check is that the space of
      propositions does indeed form a complete BI algebra.

      The following instance declaration checks that an instance of
      the complete BI class can be found for Props (and binds it with
      a low priority to potentially speed up the proof search).
   *)

  Instance Props_BI : ComplBI Props | 0 := _.
  Instance Props_Later : Later Props | 0 := _.

  (** And now we're ready to build the IRIS-specific connectives! *)

31 32 33 34 35 36
  Section Necessitation.
    (** Note: this could be moved to BI, since it's possible to define
        for any UPred over a monoid. **)

    Local Obligation Tactic := intros; resp_set || eauto with typeclass_instances.

37
    Program Definition box : Props -n> Props :=
38
      n[(fun p => m[(fun w => mkUPred (fun n r => p w n (pcm_unit _)) _)])].
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    Next Obligation.
      intros n m r s HLe _ Hp; rewrite HLe; assumption.
    Qed.
    Next Obligation.
      intros w1 w2 EQw m r HLt; simpl.
      eapply (met_morph_nonexp _ _ p); eassumption.
    Qed.
    Next Obligation.
      intros w1 w2 Subw n r; simpl.
      apply p; assumption.
    Qed.
    Next Obligation.
      intros p1 p2 EQp w m r HLt; simpl.
      apply EQp; assumption.
    Qed.

  End Necessitation.

  (** "Internal" equality **)
  Section IntEq.
    Context {T} `{mT : metric T}.

61
    Program Definition intEqP (t1 t2 : T) : UPred res :=
62 63 64 65 66
      mkUPred (fun n r => t1 = S n = t2) _.
    Next Obligation.
      intros n1 n2 _ _ HLe _; apply mono_dist; now auto with arith.
    Qed.

67
    Definition intEq (t1 t2 : T) : Props := pcmconst (intEqP t1 t2).
68 69 70 71 72 73 74 75

    Instance intEq_equiv : Proper (equiv ==> equiv ==> equiv) intEqP.
    Proof.
      intros l1 l2 EQl r1 r2 EQr n r.
      split; intros HEq; do 2 red.
      - rewrite <- EQl, <- EQr; assumption.
      - rewrite EQl, EQr; assumption.
    Qed.
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90
    Instance intEq_dist n : Proper (dist n ==> dist n ==> dist n) intEqP.
    Proof.
      intros l1 l2 EQl r1 r2 EQr m r HLt.
      split; intros HEq; do 2 red.
      - etransitivity; [| etransitivity; [apply HEq |] ];
        apply mono_dist with n; eassumption || now auto with arith.
      - etransitivity; [| etransitivity; [apply HEq |] ];
        apply mono_dist with n; eassumption || now auto with arith.
    Qed.

  End IntEq.

  Notation "t1 '===' t2" := (intEq t1 t2) (at level 70) : iris_scope.

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  Section Invariants.

    (** Invariants **)
    Definition invP (i : nat) (p : Props) (w : Wld) : UPred res :=
      intEqP (w i) (Some (ı' p)).
    Program Definition inv i : Props -n> Props :=
      n[(fun p => m[(invP i p)])].
    Next Obligation.
      intros w1 w2 EQw; unfold equiv, invP in *.
      apply intEq_equiv; [apply EQw | reflexivity].
    Qed.
    Next Obligation.
      intros w1 w2 EQw; unfold invP; simpl morph.
      destruct n; [apply dist_bound |].
      apply intEq_dist; [apply EQw | reflexivity].
    Qed.
    Next Obligation.
      intros w1 w2 Sw; unfold invP; simpl morph.
      intros n r HP; do 2 red; specialize (Sw i); do 2 red in HP.
      destruct (w1 i) as [μ1 |]; [| contradiction].
      destruct (w2 i) as [μ2 |]; [| contradiction]; simpl in Sw.
      rewrite <- Sw; assumption.
    Qed.
    Next Obligation.
      intros p1 p2 EQp w; unfold equiv, invP in *; simpl morph.
      apply intEq_equiv; [reflexivity |].
      rewrite EQp; reflexivity.
    Qed.
    Next Obligation.
      intros p1 p2 EQp w; unfold invP; simpl morph.
      apply intEq_dist; [reflexivity |].
      apply dist_mono, (met_morph_nonexp _ _ ı'), EQp.
    Qed.

  End Invariants.
126

127 128 129 130 131 132 133 134 135 136 137 138 139
  Notation "□ p" := (box p) (at level 30, right associativity) : iris_scope.
  Notation "⊤" := (top : Props) : iris_scope.
  Notation "⊥" := (bot : Props) : iris_scope.
  Notation "p ∧ q" := (and p q : Props) (at level 40, left associativity) : iris_scope.
  Notation "p ∨ q" := (or p q : Props) (at level 50, left associativity) : iris_scope.
  Notation "p * q" := (sc p q : Props) (at level 40, left associativity) : iris_scope.
  Notation "p → q" := (BI.impl p q : Props) (at level 55, right associativity) : iris_scope.
  Notation "p '-*' q" := (si p q : Props) (at level 55, right associativity) : iris_scope.
  Notation "∀ x , p" := (all n[(fun x => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
  Notation "∃ x , p" := (all n[(fun x => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
  Notation "∀ x : T , p" := (all n[(fun x : T => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.
  Notation "∃ x : T , p" := (all n[(fun x : T => p)] : Props) (at level 60, x ident, no associativity) : iris_scope.

140 141 142 143 144
  (** Ownership **)
  Definition ownR (r : res) : Props :=
    pcmconst (up_cr (pord r)).

  (** Physical part **)
145
  Definition ownRP (r : pcm_res_ex state) : Props :=
146 147 148 149 150 151
    ownR (r, pcm_unit _).

  (** Logical part **)
  Definition ownRL (r : RL.res) : Props :=
    ownR (pcm_unit _, r).

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  (** Proper physical state: ownership of the machine state **)
  Instance state_type : Setoid state := discreteType.
  Instance state_metr : metric state := discreteMetric.
  Instance state_cmetr : cmetric state := discreteCMetric.

  Program Definition ownS : state -n> Props :=
    n[(fun s => ownRP (ex_own _ s))].
  Next Obligation.
    intros r1 r2 EQr. hnf in EQr. now rewrite EQr.
  Qed.
  Next Obligation.
    intros r1 r2 EQr; destruct n as [| n]; [apply dist_bound |].
    simpl in EQr. subst; reflexivity.
  Qed.

  (** Proper ghost state: ownership of logical w/ possibility of undefined **)
168
  Lemma ores_equiv_eq T `{pcmT : PCM T} (r1 r2 : option T) (HEq : r1 == r2) : r1 = r2.
169 170 171 172 173
  Proof.
    destruct r1 as [r1 |]; destruct r2 as [r2 |]; try contradiction;
    simpl in HEq; subst; reflexivity.
  Qed.

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
  Instance logR_metr : metric RL.res := discreteMetric.
  Instance logR_cmetr : cmetric RL.res := discreteCMetric.

  Program Definition ownL : (option RL.res) -n> Props :=
    n[(fun r => match r with
                  | Some r => ownRL r
                  | None => 
                end)].
  Next Obligation.
    intros r1 r2 EQr; apply ores_equiv_eq in EQr; now rewrite EQr.
  Qed.
  Next Obligation.
    intros r1 r2 EQr; destruct n as [| n]; [apply dist_bound |].
    destruct r1 as [r1 |]; destruct r2 as [r2 |]; try contradiction; simpl in EQr; subst; reflexivity.
  Qed.

190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  (** Lemmas about box **)
  Lemma box_intro p q (Hpq :  p  q) :
     p   q.
  Proof.
    intros w n r Hp; simpl; apply Hpq, Hp.
  Qed.

  Lemma box_elim p :
     p  p.
  Proof.
    intros w n r Hp; simpl in Hp.
    eapply uni_pred, Hp; [reflexivity |].
    exists r; now erewrite comm, pcm_op_unit by apply _.
  Qed.

206 207 208 209 210
  Lemma box_top :  ==  .
  Proof.
    intros w n r; simpl; unfold const; reflexivity.
  Qed.

211 212 213 214 215 216
  (** Ghost state ownership **)
  Lemma ownL_sc (u t : option RL.res) :
    ownL (u · t)%pcm == ownL u * ownL t.
  Proof.
    intros w n r; split; [intros Hut | intros [r1 [r2 [EQr [Hu Ht] ] ] ] ].
    - destruct (u · t)%pcm as [ut |] eqn: EQut; [| contradiction].
217
      do 15 red in Hut; rewrite <- Hut.
218 219 220
      destruct u as [u |]; [| now erewrite pcm_op_zero in EQut by apply _].
      assert (HT := comm (Some u) t); rewrite EQut in HT.
      destruct t as [t |]; [| now erewrite pcm_op_zero in HT by apply _]; clear HT.
221
      exists (pcm_unit (pcm_res_ex state), u) (pcm_unit (pcm_res_ex state), t).
222
      split; [unfold pcm_op, res_op, pcm_op_prod | split; do 15 red; reflexivity].
223 224 225 226 227 228 229 230 231 232 233 234
      now erewrite pcm_op_unit, EQut by apply _.
    - destruct u as [u |]; [| contradiction]; destruct t as [t |]; [| contradiction].
      destruct Hu as [ru EQu]; destruct Ht as [rt EQt].
      rewrite <- EQt, assoc, (comm (Some r1)) in EQr.
      rewrite <- EQu, assoc, <- (assoc (Some rt · Some ru)%pcm) in EQr.
      unfold pcm_op at 3, res_op at 4, pcm_op_prod at 1 in EQr.
      erewrite pcm_op_unit in EQr by apply _; clear EQu EQt.
      destruct (Some u · Some t)%pcm as [ut |];
        [| now erewrite comm, pcm_op_zero in EQr by apply _].
      destruct (Some rt · Some ru)%pcm as [rut |];
        [| now erewrite pcm_op_zero in EQr by apply _].
      exists rut; assumption.
235 236

      (* TODO: own 0 = False, own 1 = True *)
237 238
  Qed.

239 240
  Section Erasure.
    Local Open Scope pcm_scope.
241 242 243 244 245 246 247
    Local Open Scope bi_scope.

    (* First, we need to erase a finite map. This won't be pretty, for
       now, since the library does not provide enough
       constructs. Hopefully we can provide a fold that'd work for
       that at some point
     *)
248
    Fixpoint comp_list (xs : list res) : option res :=
249 250
      match xs with
        | nil => 1
251
        | (x :: xs)%list => Some x · comp_list xs
252 253 254
      end.

    Definition cod (m : nat -f> res) : list res := List.map snd (findom_t m).
255
    Definition erase (m : nat -f> res) : option res := comp_list (cod m).
256 257

    Lemma erase_remove (rs : nat -f> res) i r (HLu : rs i = Some r) :
258
      erase rs == Some r · erase (fdRemove i rs).
259
    Proof.
260 261
      destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl findom_t in *.
      induction rs as [| [j s] ]; [discriminate |]; simpl comp_list; simpl in HLu.
262
      destruct (comp i j); [inversion HLu; reflexivity | discriminate |].
263 264
      simpl comp_list; rewrite IHrs by eauto using SS_tail.
      rewrite !assoc, (comm (Some s)); reflexivity.
265 266 267
    Qed.

    Lemma erase_insert_new (rs : nat -f> res) i r (HNLu : rs i = None) :
268
      Some r · erase rs == erase (fdUpdate i r rs).
269
    Proof.
270 271
      destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl findom_t in *.
      induction rs as [| [j s] ]; [reflexivity | simpl comp_list; simpl in HNLu].
272
      destruct (comp i j); [discriminate | reflexivity |].
273 274
      simpl comp_list; rewrite <- IHrs by eauto using SS_tail.
      rewrite !assoc, (comm (Some r)); reflexivity.
275 276
    Qed.

277 278 279
    Lemma erase_insert_old (rs : nat -f> res) i r1 r2 r
          (HLu : rs i = Some r1) (HEq : Some r1 · Some r2 == Some r) :
      Some r2 · erase rs == erase (fdUpdate i r rs).
280
    Proof.
281 282
      destruct rs as [rs rsP]; unfold erase, cod, findom_f in *; simpl findom_t in *.
      induction rs as [| [j s] ]; [discriminate |]; simpl comp_list; simpl in HLu.
283
      destruct (comp i j); [inversion HLu; subst; clear HLu | discriminate |].
284 285 286
      - simpl comp_list; rewrite assoc, (comm (Some r2)), <- HEq; reflexivity.
      - simpl comp_list; rewrite <- IHrs by eauto using SS_tail.
        rewrite !assoc, (comm (Some r2)); reflexivity.
287 288
    Qed.

289 290 291 292 293
    Definition erase_state (r: option res) σ: Prop := match r with
    | Some (ex_own s, _) => s = σ
    | _ => False
    end.

294
    Global Instance preo_unit : preoType () := disc_preo ().
295

296
    Program Definition erasure (σ : state) (m : mask) (r s : option res) (w : Wld) : UPred () :=
297
       (mkUPred (fun n _ =>
298
                    erase_state (r · s) σ
299
                    /\ exists rs : nat -f> res,
300
                         erase rs == s /\
301 302 303 304
                         forall i (Hm : m i),
                           (i  dom rs <-> i  dom w) /\
                           forall π ri (HLw : w i == Some π) (HLrs : rs i == Some ri),
                             ı π w n ri) _).
305
    Next Obligation.
306 307
      intros n1 n2 _ _ HLe _ [HES HRS]; split; [assumption |].
      setoid_rewrite HLe; eassumption.
308 309
    Qed.

310
    Global Instance erasure_equiv σ : Proper (meq ==> equiv ==> equiv ==> equiv ==> equiv) (erasure σ).
311
    Proof.
312 313
      intros m1 m2 EQm r r' EQr s s' EQs w1 w2 EQw [| n] []; [reflexivity |];
      apply ores_equiv_eq in EQr; apply ores_equiv_eq in EQs; subst r' s'.
314
      split; intros [HES [rs [HE HM] ] ]; (split; [tauto | clear HES; exists rs]).
Filip Sieczkowski's avatar
Filip Sieczkowski committed
315
      - split; [assumption | intros; apply EQm in Hm; split; [| setoid_rewrite <- EQw; apply HM, Hm] ].
316 317
        destruct (HM _ Hm) as [HD _]; rewrite HD; clear - EQw.
        rewrite fdLookup_in; setoid_rewrite EQw; rewrite <- fdLookup_in; reflexivity.
Filip Sieczkowski's avatar
Filip Sieczkowski committed
318
      - split; [assumption | intros; apply EQm in Hm; split; [| setoid_rewrite EQw; apply HM, Hm] ].
319 320
        destruct (HM _ Hm) as [HD _]; rewrite HD; clear - EQw.
        rewrite fdLookup_in; setoid_rewrite <- EQw; rewrite <- fdLookup_in; reflexivity.
321 322 323 324 325
    Qed.

    Global Instance erasure_dist n σ m r s : Proper (dist n ==> dist n) (erasure σ m r s).
    Proof.
      intros w1 w2 EQw [| n'] [] HLt; [reflexivity |]; destruct n as [| n]; [now inversion HLt |].
326 327 328 329
      split; intros [HES [rs [HE HM] ] ]; (split; [tauto | clear HES; exists rs]).
      - split; [assumption | split; [rewrite <- (domeq _ _ _ EQw); apply HM, Hm |] ].
        intros; destruct (HM _ Hm) as [_ HR]; clear HE HM Hm.
        assert (EQπ := EQw i); rewrite HLw in EQπ; clear HLw.
330 331 332
        destruct (w1 i) as [π' |]; [| contradiction]; do 3 red in EQπ.
        apply ı in EQπ; apply EQπ; [now auto with arith |].
        apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |].
333 334 335 336
        apply HR; [reflexivity | assumption].
      - split; [assumption | split; [rewrite (domeq _ _ _ EQw); apply HM, Hm |] ].
        intros; destruct (HM _ Hm) as [_ HR]; clear HE HM Hm.
        assert (EQπ := EQw i); rewrite HLw in EQπ; clear HLw.
337 338 339
        destruct (w2 i) as [π' |]; [| contradiction]; do 3 red in EQπ.
        apply ı in EQπ; apply EQπ; [now auto with arith |].
        apply (met_morph_nonexp _ _ (ı π')) in EQw; apply EQw; [now auto with arith |].
340
        apply HR; [reflexivity | assumption].
341 342
    Qed.

343 344 345 346
    Lemma erasure_not_empty σ m r s w k (HN : r · s == 0) :
      ~ erasure σ m r s w (S k) tt.
    Proof.
      intros [HD _]; apply ores_equiv_eq in HN; setoid_rewrite HN in HD.
347
      exact HD.
348 349
    Qed.

350 351 352 353 354 355 356 357
  End Erasure.

  Notation " p @ k " := ((p : UPred ()) k tt) (at level 60, no associativity).

  Section ViewShifts.
    Local Open Scope mask_scope.
    Local Open Scope pcm_scope.
    Local Obligation Tactic := intros.
358 359

    Program Definition preVS (m1 m2 : mask) (p : Props) (w : Wld) : UPred res :=
360 361 362 363 364 365
      mkUPred (fun n r => forall w1 rf s mf σ k (HSub : w  w1) (HLe : k < n)
                                 (HD : mf # m1  m2)
                                 (HE : erasure σ (m1  mf) (Some r · rf) s w1 @ S k),
                          exists w2 r' s',
                            w1  w2 /\ p w2 (S k) r'
                            /\ erasure σ (m2  mf) (Some r' · rf) s' w2 @ S k) _.
366
    Next Obligation.
367
      intros n1 n2 r1 r2 HLe [rd HR] HP; intros.
368 369 370 371 372 373 374 375 376
      destruct (HP w1 (Some rd · rf) s mf σ k) as [w2 [r1' [s' [HW [HP' HE'] ] ] ] ];
        try assumption; [now eauto with arith | |].
      - eapply erasure_equiv, HE; try reflexivity.
        rewrite assoc, (comm (Some r1)), HR; reflexivity.
      - rewrite assoc, (comm (Some r1')) in HE'.
        destruct (Some rd · Some r1') as [r2' |] eqn: HR';
          [| apply erasure_not_empty in HE'; [contradiction | now erewrite !pcm_op_zero by apply _] ].
        exists w2 r2' s'; split; [assumption | split; [| assumption] ].
        eapply uni_pred, HP'; [| exists rd; rewrite HR']; reflexivity.
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    Qed.

    Program Definition pvs (m1 m2 : mask) : Props -n> Props :=
      n[(fun p => m[(preVS m1 m2 p)])].
    Next Obligation.
      intros w1 w2 EQw n r; split; intros HP w2'; intros.
      - eapply HP; try eassumption; [].
        rewrite EQw; assumption.
      - eapply HP; try eassumption; [].
        rewrite <- EQw; assumption.
    Qed.
    Next Obligation.
      intros w1 w2 EQw n' r HLt; destruct n as [| n]; [now inversion HLt |]; split; intros HP w2'; intros.
      - symmetry in EQw; assert (HDE := extend_dist _ _ _ _ EQw HSub).
        assert (HSE := extend_sub _ _ _ _ EQw HSub); specialize (HP (extend w2' w1)).
392
        edestruct HP as [w1'' [r' [s' [HW HH] ] ] ]; try eassumption; clear HP; [ | ].
393 394
        + eapply erasure_dist, HE; [symmetry; eassumption | now eauto with arith].
        + symmetry in HDE; assert (HDE' := extend_dist _ _ _ _ HDE HW).
395 396
          assert (HSE' := extend_sub _ _ _ _ HDE HW); destruct HH as [HP HE'];
          exists (extend w1'' w2') r' s'; split; [assumption | split].
397 398 399
          * eapply (met_morph_nonexp _ _ p), HP ; [symmetry; eassumption | now eauto with arith].
          * eapply erasure_dist, HE'; [symmetry; eassumption | now eauto with arith].
      - assert (HDE := extend_dist _ _ _ _ EQw HSub); assert (HSE := extend_sub _ _ _ _ EQw HSub); specialize (HP (extend w2' w2)).
400
        edestruct HP as [w1'' [r' [s' [HW HH] ] ] ]; try eassumption; clear HP; [ | ].
401 402
        + eapply erasure_dist, HE; [symmetry; eassumption | now eauto with arith].
        + symmetry in HDE; assert (HDE' := extend_dist _ _ _ _ HDE HW).
403 404
          assert (HSE' := extend_sub _ _ _ _ HDE HW); destruct HH as [HP HE'];
          exists (extend w1'' w2') r' s'; split; [assumption | split].
405 406 407 408 409 410 411 412 413 414 415 416 417 418
          * eapply (met_morph_nonexp _ _ p), HP ; [symmetry; eassumption | now eauto with arith].
          * eapply erasure_dist, HE'; [symmetry; eassumption | now eauto with arith].
    Qed.
    Next Obligation.
      intros w1 w2 EQw n r HP w2'; intros; eapply HP; try eassumption; [].
      etransitivity; eassumption.
    Qed.
    Next Obligation.
      intros p1 p2 EQp w n r; split; intros HP w1; intros.
      - setoid_rewrite <- EQp; eapply HP; eassumption.
      - setoid_rewrite EQp; eapply HP; eassumption.
    Qed.
    Next Obligation.
      intros p1 p2 EQp w n' r HLt; split; intros HP w1; intros.
419
      - edestruct HP as [w2 [r' [s' [HW [HP' HE'] ] ] ] ]; try eassumption; [].
420
        clear HP; repeat (eexists; try eassumption); [].
421
        apply EQp; [now eauto with arith | assumption].
422
      - edestruct HP as [w2 [r' [s' [HW [HP' HE'] ] ] ] ]; try eassumption; [].
423
        clear HP; repeat (eexists; try eassumption); [].
424 425 426 427 428 429 430 431
        apply EQp; [now eauto with arith | assumption].
    Qed.

    Definition vs (m1 m2 : mask) (p q : Props) : Props :=
       (p  pvs m1 m2 q).

  End ViewShifts.

432 433 434 435
  Section ViewShiftProps.
    Local Open Scope mask_scope.
    Local Open Scope pcm_scope.
    Local Open Scope bi_scope.
436 437

    Implicit Types (p q r : Props) (i : nat) (m : mask).
438 439 440

    Definition mask_sing i := mask_set mask_emp i True.

Ralf Jung's avatar
Ralf Jung committed
441
    (* TODO: Why do we even need the nonzero lemma about erase_state here? *)
442 443 444 445 446 447 448 449 450 451 452
    Lemma vsOpen i p :
      valid (vs (mask_sing i) mask_emp (inv i p) ( p)).
    Proof.
      intros pw nn r w _; clear r pw.
      intros n r _ _ HInv w'; clear nn; intros.
      do 12 red in HInv; destruct (w i) as [μ |] eqn: HLu; [| contradiction].
      apply ı in HInv; rewrite (isoR p) in HInv.
      (* get rid of the invisible 1/2 *)
      do 8 red in HInv.
      destruct HE as [HES [rs [HE HM] ] ].
      destruct (rs i) as [ri |] eqn: HLr.
453
      - rewrite erase_remove with (i := i) (r := ri) in HE by assumption.
454 455 456 457
        assert (HR : Some r · rf · s == Some r · Some ri · rf · erase (fdRemove i rs))
          by (rewrite <- HE, assoc, <- (assoc (Some r)), (comm rf), assoc; reflexivity).
        apply ores_equiv_eq in HR; setoid_rewrite HR in HES; clear HR.
        destruct (Some r · Some ri) as [rri |] eqn: HR;
Ralf Jung's avatar
Ralf Jung committed
458
          [| erewrite !pcm_op_zero in HES by apply _; now contradiction].
459 460
        exists w' rri (erase (fdRemove i rs)); split; [reflexivity |].
        split; [| split; [assumption |] ].
461
        + simpl; eapply HInv; [now auto with arith |].
462 463
          eapply uni_pred, HM with i;
            [| exists r; rewrite <- HR | | | rewrite HLr]; try reflexivity; [|].
464 465
          * left; unfold mask_sing, mask_set.
            destruct (Peano_dec.eq_nat_dec i i); tauto.
466 467 468
          * specialize (HSub i); rewrite HLu in HSub.
            symmetry; destruct (w' i); [assumption | contradiction].
        + exists (fdRemove i rs); split; [reflexivity | intros j Hm].
469 470 471 472 473 474 475 476 477 478 479
          destruct Hm as [| Hm]; [contradiction |]; specialize (HD j); simpl in HD.
          unfold mask_sing, mask_set in HD; destruct (Peano_dec.eq_nat_dec i j);
          [subst j; contradiction HD; tauto | clear HD].
          rewrite fdLookup_in; setoid_rewrite (fdRemove_neq _ _ _ n0); rewrite <- fdLookup_in; now auto.
      - rewrite <- fdLookup_notin_strong in HLr; contradiction HLr; clear HLr.
        specialize (HSub i); rewrite HLu in HSub; clear - HM HSub.
        destruct (HM i) as [HD _]; [left | rewrite HD, fdLookup_in_strong; destruct (w' i); [eexists; reflexivity | contradiction] ].
        clear; unfold mask_sing, mask_set.
        destruct (Peano_dec.eq_nat_dec i i); tauto.
    Qed.

480
    Lemma vsClose i p :
481 482 483 484 485 486 487 488 489
      valid (vs mask_emp (mask_sing i) (inv i p *  p) ).
    Proof.
      intros pw nn r w _; clear r pw.
      intros n r _ _ [r1 [r2 [HR [HInv HP] ] ] ] w'; clear nn; intros.
      do 12 red in HInv; destruct (w i) as [μ |] eqn: HLu; [| contradiction].
      apply ı in HInv; rewrite (isoR p) in HInv.
      (* get rid of the invisible 1/2 *)
      do 8 red in HInv.
      destruct HE as [HES [rs [HE HM] ] ].
490 491
      exists w' (pcm_unit _) (Some r · s); split; [reflexivity | split; [exact I |] ].
      assert (HR' : Some r · rf · s = rf · (Some r · s))
492
        by (eapply ores_equiv_eq; rewrite assoc, (comm rf); reflexivity).
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
      setoid_rewrite HR' in HES; erewrite pcm_op_unit by apply _.
      split; [assumption |].
      remember (match rs i with Some ri => ri | None => pcm_unit _ end) as ri eqn: EQri.
      destruct (Some ri · Some r) as [rri |] eqn: EQR.
      - exists (fdUpdate i rri rs); split; [| intros j Hm].
        + symmetry; rewrite <- HE; clear - EQR EQri; destruct (rs i) as [rsi |] eqn: EQrsi; subst;
          [eapply erase_insert_old; [eassumption | rewrite <- EQR; reflexivity] |].
          erewrite pcm_op_unit in EQR by apply _; rewrite EQR.
          now apply erase_insert_new.
        + specialize (HD j); unfold mask_sing, mask_set in *; simpl in Hm, HD.
          destruct (Peano_dec.eq_nat_dec i j);
            [subst j; clear Hm |
             destruct Hm as [Hm | Hm]; [contradiction | rewrite fdLookup_in_strong, fdUpdate_neq, <- fdLookup_in_strong by assumption; now auto] ].
          rewrite !fdLookup_in_strong, fdUpdate_eq.
          destruct n as [| n]; [now inversion HLe | simpl in HP].
          rewrite HSub in HP; specialize (HSub i); rewrite HLu in HSub.
          destruct (w' i) as [π' |]; [| contradiction].
          split; [intuition now eauto | intros].
          simpl in HLw, HLrs, HSub; subst ri0; rewrite <- HLw, <- HSub.
          apply HInv; [now auto with arith |].
          eapply uni_pred, HP; [now auto with arith |].
          assert (HT : Some ri · Some r1 · Some r2 == Some rri)
            by (rewrite <- EQR, <- HR, assoc; reflexivity); clear - HT.
          destruct (Some ri · Some r1) as [rd |];
            [| now erewrite pcm_op_zero in HT by apply _].
          exists rd; assumption.
      - destruct (rs i) as [rsi |] eqn: EQrsi; subst;
        [| erewrite pcm_op_unit in EQR by apply _; discriminate].
Ralf Jung's avatar
Ralf Jung committed
521 522
        clear - HE HES EQrsi EQR.
        assert (HH : rf · (Some r · s) = 0); [clear HES | rewrite HH in HES; contradiction].
523
        eapply ores_equiv_eq; rewrite <- HE, erase_remove by eassumption.
524 525 526
        rewrite (assoc (Some r)), (comm (Some r)), EQR, comm.
        erewrite !pcm_op_zero by apply _; reflexivity.
    Qed.
527 528 529 530 531 532

    Lemma vsTrans p q r m1 m2 m3 (HMS : m2  m1  m3) :
      vs m1 m2 p q  vs m2 m3 q r  vs m1 m3 p r.
    Proof.
      intros w' n r1 [Hpq Hqr] w HSub; specialize (Hpq _ HSub); rewrite HSub in Hqr; clear w' HSub.
      intros np rp HLe HS Hp w1; intros; specialize (Hpq _ _ HLe HS Hp).
533
      edestruct Hpq as [w2 [rq [sq [HSw12 [Hq HEq] ] ] ] ]; try eassumption; [|].
534 535 536 537 538
      { (* XXX: possible lemma *)
        clear - HD HMS.
        intros j [Hmf Hm12]; apply (HD j); split; [assumption |].
        destruct Hm12 as [Hm1 | Hm2]; [left; assumption | apply HMS, Hm2].
      }
539
      clear HS; assert (HS : pcm_unit _  rq) by (exists rq; now erewrite comm, pcm_op_unit by apply _).
540
      rewrite <- HLe, HSub in Hqr; specialize (Hqr _ HSw12); clear Hpq HE w HSub Hp.
541
      edestruct (Hqr (S k) _ HLe0 HS Hq w2) as [w3 [rR [sR [HSw23 [Hr HEr] ] ] ] ];
542
        try (reflexivity || eassumption); [now auto with arith | |].
543 544 545 546 547 548
      { (* XXX: possible lemma *)
        clear - HD HMS.
        intros j [Hmf Hm23]; apply (HD j); split; [assumption |].
        destruct Hm23 as [Hm2 | Hm3]; [apply HMS, Hm2 | right; assumption].
      }
      clear HEq Hq HS.
549
      setoid_rewrite HSw12; eauto 8.
550 551
    Qed.

552 553
    Lemma vsEnt p q m :
       (p  q)  vs m m p q.
554
    Proof.
555 556
      intros w' n r1 Himp w HSub; rewrite HSub in Himp; clear w' HSub.
      intros np rp HLe HS Hp w1; intros.
557
      exists w1 rp s; split; [reflexivity | split; [| assumption ] ].
558 559 560
      eapply Himp; [assumption | now eauto with arith | exists rp; now erewrite comm, pcm_op_unit by apply _ |].
      unfold lt in HLe0; rewrite HLe0, <- HSub; assumption.
    Qed.
561

562
    Lemma vsFrame p q r m1 m2 mf (HDisj : mf # m1  m2) :
563 564
      vs m1 m2 p q  vs (m1  mf) (m2  mf) (p * r) (q * r).
    Proof.
Filip Sieczkowski's avatar
Filip Sieczkowski committed
565 566
      intros w' n r1 HVS w HSub; specialize (HVS _ HSub); clear w' r1 HSub.
      intros np rpr HLe _ [rp [rr [HR [Hp Hr] ] ] ] w'; intros.
567 568
      assert (HS : pcm_unit _  rp) by (exists rp; now erewrite comm, pcm_op_unit by apply _).
      specialize (HVS _ _ HLe HS Hp w' (Some rr · rf) s (mf  mf0) σ k); clear HS.
Filip Sieczkowski's avatar
Filip Sieczkowski committed
569
      destruct HVS as [w'' [rq [s' [HSub' [Hq HEq] ] ] ] ]; try assumption; [| |].
570
      - (* disjointness of masks: possible lemma *)
Filip Sieczkowski's avatar
Filip Sieczkowski committed
571 572 573 574
        clear - HD HDisj; intros i [ [Hmf | Hmf] Hm12]; [eapply HDisj; now eauto |].
        eapply HD; split; [eassumption | tauto].
      - rewrite assoc, HR; eapply erasure_equiv, HE; try reflexivity; [].
        clear; intros i; tauto.
575 576 577 578 579 580
      - rewrite assoc in HEq; destruct (Some rq · Some rr) as [rqr |] eqn: HR';
        [| apply erasure_not_empty in HEq; [contradiction | now erewrite !pcm_op_zero by apply _] ].
        exists w'' rqr s'; split; [assumption | split].
        + unfold lt in HLe0; rewrite HSub, HSub', <- HLe0 in Hr; exists rq rr.
          rewrite HR'; split; now auto.
        + eapply erasure_equiv, HEq; try reflexivity; [].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
581
          clear; intros i; tauto.
582
    Qed.
583

584 585 586 587 588 589 590 591 592
    (* XXX: extra lemma *)
    Lemma valid_iff p :
      valid p <-> (  p).
    Proof.
      split; intros Hp.
      - intros w n r _; apply Hp.
      - intros w n r; apply Hp; exact I.
    Qed.

593
    Lemma vsFalse m1 m2 : (* TODO move to derived rules *)
594 595
      valid (vs m1 m2  ).
    Proof.
596 597 598 599
      rewrite valid_iff, box_top.
      unfold vs; apply box_intro.
      rewrite <- and_impl, and_projR.
      apply bot_false.
600 601
    Qed.

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    Instance LP_optres (P : option RL.res -> Prop) : LimitPreserving P.
    Proof.
      intros σ σc HPc; simpl; unfold option_compl.
      generalize (@eq_refl _ (σ 1%nat)).
      pattern (σ 1%nat) at 1 3; destruct (σ 1%nat); [| intros HE; rewrite HE; apply HPc].
      intros HE; simpl; unfold discreteCompl, unSome.
      generalize (@eq_refl _ (σ 2)); pattern (σ 2) at 1 3; destruct (σ 2).
      + intros HE'; rewrite HE'; apply HPc.
      + intros HE'; exfalso; specialize (σc 1 1 2)%nat.
        rewrite <- HE, <- HE' in σc; contradiction σc; auto with arith.
    Qed.

    Definition ownLP (P : option RL.res -> Prop) : {s : option RL.res | P s} -n> Props :=
      ownL <M< inclM.

Lemma pcm_op_split rp1 rp2 rp sp1 sp2 sp :
  Some (rp1, sp1) · Some (rp2, sp2) == Some (rp, sp) <->
  Some rp1 · Some rp2 == Some rp /\ Some sp1 · Some sp2 == Some sp.
Proof.
  unfold pcm_op at 1, res_op at 2, pcm_op_prod at 1.
  destruct (Some rp1 · Some rp2) as [rp' |]; [| simpl; tauto].
  destruct (Some sp1 · Some sp2) as [sp' |]; [| simpl; tauto].
  simpl; split; [| intros [EQ1 EQ2]; subst; reflexivity].
  intros EQ; inversion EQ; tauto.
Qed.

    Lemma vsGhostUpd m rl (P : option RL.res -> Prop)
          (HU : forall rf (HD : rl · rf <> None), exists sl, P sl /\ sl · rf <> None) :
      valid (vs m m (ownL rl) (xist (ownLP P))).
    Proof.
      unfold ownLP; intros _ _ _ w _ n [rp' rl'] _ _ HG w'; intros.
      destruct rl as [rl |]; simpl in HG; [| contradiction].
      destruct HG as [ [rdp rdl] EQr]; rewrite pcm_op_split in EQr; destruct EQr as [EQrp EQrl].
      erewrite comm, pcm_op_unit in EQrp by apply _; simpl in EQrp; subst rp'.
      destruct (Some (rdp, rl') · rf · s) as [t |] eqn: EQt;
Ralf Jung's avatar
Ralf Jung committed
637
        [| destruct HE as [HES _]; setoid_rewrite EQt in HES; contradiction].
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
      assert (EQt' : Some (rdp, rl') · rf · s == Some t) by (rewrite EQt; reflexivity).
      clear EQt; rename EQt' into EQt.
      destruct rf as [ [rfp rfl] |]; [| now erewrite (comm _ 0), !pcm_op_zero in EQt by apply _].
      destruct s as [ [sp sl] |]; [| now erewrite (comm _ 0), pcm_op_zero in EQt by apply _].
      destruct (Some (rdp, rl') · Some (rfp, rfl)) as [ [rdfp rdfl] |] eqn: EQdf;
        setoid_rewrite EQdf in EQt; [| now erewrite pcm_op_zero in EQt by apply _].
      destruct (HU (Some rdl · Some rfl · Some sl)) as [rsl [HPrsl HCrsl] ].
      - intros HEq; destruct t as [tp tl]; apply pcm_op_split in EQt; destruct EQt as [_ EQt].
        assert (HT : Some (rdp, rl') · Some (rfp, rfl) == Some (rdfp, rdfl)) by (rewrite EQdf; reflexivity); clear EQdf.
        apply pcm_op_split in HT; destruct HT as [_ EQdf].
        now rewrite <- EQdf, <- EQrl, (comm (Some rdl)), <- (assoc (Some rl)), <- assoc, HEq in EQt.
      - destruct (rsl · Some rdl) as [rsl' |] eqn: EQrsl;
        [| contradiction HCrsl; eapply ores_equiv_eq; now erewrite !assoc, EQrsl, !pcm_op_zero by apply _ ].
        exists w' (rdp, rsl') (Some (sp, sl)); split; [reflexivity | split].
        + exists (exist _ rsl HPrsl); destruct rsl as [rsl |];
          [simpl | now erewrite pcm_op_zero in EQrsl by apply _].
          exists (rdp, rdl); rewrite pcm_op_split.
          split; [now erewrite comm, pcm_op_unit by apply _ | now rewrite comm, EQrsl].
        + destruct HE as [HES HEL]; split; [| assumption]; clear HEL.
          assert (HT := ores_equiv_eq _ _ _ EQt); setoid_rewrite EQdf in HES;
          setoid_rewrite HT in HES; clear HT; destruct t as [tp tl].
          destruct (rsl · (Some rdl · Some rfl · Some sl)) as [tl' |] eqn: EQtl;
          [| now contradiction HCrsl]; clear HCrsl.
          assert (HT : Some (rdp, rsl') · Some (rfp, rfl) · Some (sp, sl) = Some (tp, tl')); [| setoid_rewrite HT; apply HES].
          rewrite <- EQdf, <- assoc in EQt; clear EQdf; eapply ores_equiv_eq; rewrite <- assoc.
          destruct (Some (rfp, rfl) · Some (sp, sl)) as [ [up ul] |] eqn: EQu;
            setoid_rewrite EQu in EQt; [| now erewrite comm, pcm_op_zero in EQt by apply _].
          apply pcm_op_split in EQt; destruct EQt as [EQt _]; apply pcm_op_split; split; [assumption |].
          assert (HT : Some rfl · Some sl == Some ul);
            [| now rewrite <- EQrsl, <- EQtl, <- HT, !assoc].
          apply (proj2 (A := Some rfp · Some sp == Some up)), pcm_op_split.
          now erewrite EQu.
    Qed.
    (* The above proof is rather ugly in the way it handles the monoid elements,
       but it works *)

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
    Global Instance nat_type : Setoid nat := discreteType.
    Global Instance nat_metr : metric nat := discreteMetric.
    Global Instance nat_cmetr : cmetric nat := discreteCMetric.

    Program Definition inv' m : Props -n> {n : nat | m n} -n> Props :=
      n[(fun p => n[(fun n => inv n p)])].
    Next Obligation.
      intros i i' EQi; simpl in EQi; rewrite EQi; reflexivity.
    Qed.
    Next Obligation.
      intros i i' EQi; destruct n as [| n]; [apply dist_bound |].
      simpl in EQi; rewrite EQi; reflexivity.
    Qed.
    Next Obligation.
      intros p1 p2 EQp i; simpl morph.
      apply (morph_resp (inv (` i))); assumption.
    Qed.
    Next Obligation.
      intros p1 p2 EQp i; simpl morph.
      apply (inv (` i)); assumption.
    Qed.

    Lemma fresh_region (w : Wld) m (HInf : mask_infinite m) :
      exists i, m i /\ w i = None.
    Proof.
      destruct (HInf (S (List.last (dom w) 0%nat))) as [i [HGe Hm] ];
      exists i; split; [assumption |]; clear - HGe.
      rewrite <- fdLookup_notin_strong.
      destruct w as [ [| [n v] w] wP]; unfold dom in *; simpl findom_t in *; [tauto |].
      simpl List.map in *; rewrite last_cons in HGe.
      unfold ge in HGe; intros HIn; eapply Gt.gt_not_le, HGe.
      apply Le.le_n_S, SS_last_le; assumption.
    Qed.

    Instance LP_mask m : LimitPreserving m.
    Proof.
      intros σ σc Hp; apply Hp.
    Qed.

    Lemma vsNewInv p m (HInf : mask_infinite m) :
      valid (vs m m ( p) (xist (inv' m p))).
    Proof.
      intros pw nn r w _; clear r pw.
      intros n r _ _ HP w'; clear nn; intros.
      destruct n as [| n]; [now inversion HLe | simpl in HP].
      rewrite HSub in HP; clear w HSub; rename w' into w.
      destruct (fresh_region w m HInf) as [i [Hm HLi] ].
      assert (HSub : w  fdUpdate i (ı' p) w).
      { intros j; destruct (Peano_dec.eq_nat_dec i j); [subst j; rewrite HLi; exact I|].
        now rewrite fdUpdate_neq by assumption.
      }
      exists (fdUpdate i (ı' p) w) (pcm_unit _) (Some r · s); split; [assumption | split].
      - exists (exist _ i Hm); do 16 red.
        unfold proj1_sig; rewrite fdUpdate_eq; reflexivity.
      - erewrite pcm_op_unit by apply _.
        assert (HR : rf · (Some r · s) = Some r · rf · s)
730
          by (eapply ores_equiv_eq; rewrite assoc, (comm rf); reflexivity).
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        destruct HE as [HES [rs [HE HM] ] ].
        split; [setoid_rewrite HR; assumption | clear HR].
        assert (HRi : rs i = None).
        { destruct (HM i) as [HDom _]; [tauto |].
          rewrite <- fdLookup_notin_strong, HDom, fdLookup_notin_strong; assumption.
        }
        exists (fdUpdate i r rs); split; [now rewrite <- erase_insert_new, HE by assumption | intros j Hm'].
        rewrite !fdLookup_in_strong; destruct (Peano_dec.eq_nat_dec i j).
        + subst j; rewrite !fdUpdate_eq; split; [intuition now eauto | intros].
          simpl in HLw, HLrs; subst ri; rewrite <- HLw, isoR, <- HSub.
          eapply uni_pred, HP; [now auto with arith | reflexivity].
        + rewrite !fdUpdate_neq, <- !fdLookup_in_strong by assumption.
          setoid_rewrite <- HSub.
          apply HM; assumption.
    Qed.

747 748


749
    (* XXX missing statements: VSTimeless *)
750

Filip Sieczkowski's avatar
Filip Sieczkowski committed
751 752 753 754 755 756 757 758 759 760 761
  End ViewShiftProps.

  Section HoareTriples.
  (* Quadruples, really *)
    Local Open Scope mask_scope.
    Local Open Scope pcm_scope.
    Local Open Scope bi_scope.
    Local Open Scope lang_scope.

    Global Instance expr_type : Setoid expr := discreteType.
    Global Instance expr_metr : metric expr := discreteMetric.
762 763 764 765 766
    Global Instance expr_cmetr : cmetric expr := discreteCMetric.
    Instance LP_isval : LimitPreserving is_value.
    Proof.
      intros σ σc HC; apply HC.
    Qed.
Filip Sieczkowski's avatar
Filip Sieczkowski committed
767 768 769 770 771 772

    Implicit Types (P Q R : Props) (i : nat) (m : mask) (e : expr) (w : Wld) (φ : value -n> Props) (r : res).

    Local Obligation Tactic := intros; eauto with typeclass_instances.

    Definition wpFP m (WP : expr -n> (value -n> Props) -n> Props) e φ w n r :=
773 774
      forall w' k s rf σ (HSw : w  w') (HLt : k < n)
             (HE : erasure σ m (Some r · rf) s w' @ S k),
Filip Sieczkowski's avatar
Filip Sieczkowski committed
775
        (forall (HV : is_value e),
776 777
         exists w'' r' s', w'  w'' /\ φ (exist _ e HV) w'' (S k) r'
                           /\ erasure σ m (Some r' · rf) s' w'' @ S k) /\
Filip Sieczkowski's avatar
Filip Sieczkowski committed
778 779
        (forall σ' ei ei' K (HDec : e = K [[ ei ]])
                (HStep : prim_step (ei, σ) (ei', σ')),
780 781
         exists w'' r' s', w'  w'' /\ WP (K [[ ei' ]]) φ w'' k r'
                           /\ erasure σ' m (Some r' · rf) s' w'' @ k) /\
782
        (forall e' K (HDec : e = K [[ fork e' ]]),
783 784 785 786
         exists w'' rfk rret s', w'  w''
                                 /\ WP (K [[ fork_ret ]]) φ w'' k rret
                                 /\ WP e' (umconst ) w'' k rfk
                                 /\ erasure σ m (Some rfk · Some rret · rf) s' w'' @ k).
Filip Sieczkowski's avatar
Filip Sieczkowski committed
787 788 789 790

    Program Definition wpF m : (expr -n> (value -n> Props) -n> Props) -n> expr -n> (value -n> Props) -n> Props :=
      n[(fun WP => n[(fun e => n[(fun φ => m[(fun w => mkUPred (wpFP m WP e φ w) _)])])])].
    Next Obligation.
791 792 793
      intros n1 n2 r1 r2 HLe [rd EQr] Hp w' k s rf σ HSw HLt HE.
      rewrite <- EQr, (comm (Some rd)), <- assoc in HE.
      specialize (Hp w' k s (Some rd · rf) σ); destruct Hp as [HV [HS HF] ];
794
      [| now eauto with arith | ..]; try assumption; [].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
795
      split; [clear HS HF | split; [clear HV HF | clear HV HS] ]; intros.
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
      - specialize (HV HV0); destruct HV as [w'' [r1' [s' [HSw' [Hφ HE'] ] ] ] ].
        rewrite assoc, (comm (Some r1')) in HE'.
        destruct (Some rd · Some r1') as [r2' |] eqn: HR;
          [| apply erasure_not_empty in HE'; [contradiction | now erewrite !pcm_op_zero by apply _] ].
        exists w'' r2' s'; split; [assumption | split; [| assumption] ].
        eapply uni_pred, Hφ; [| eexists; rewrite <- HR]; reflexivity.
      - specialize (HS _ _ _ _ HDec HStep); destruct HS as [w'' [r1' [s' [HSw' [HWP HE'] ] ] ] ].
        rewrite assoc, (comm (Some r1')) in HE'.
        destruct k as [| k]; [exists w'' r1' s'; simpl erasure; tauto |].
        destruct (Some rd · Some r1') as [r2' |] eqn: HR;
          [| apply erasure_not_empty in HE'; [contradiction | now erewrite !pcm_op_zero by apply _] ].
        exists w'' r2' s'; split; [assumption | split; [| assumption] ].
        eapply uni_pred, HWP; [| eexists; rewrite <- HR]; reflexivity.
      - specialize (HF _ _ HDec); destruct HF as [w'' [rfk [rret1 [s' [HSw' [HWR [HWF HE'] ] ] ] ] ] ].
        destruct k as [| k]; [exists w'' rfk rret1 s'; simpl erasure; tauto |].
        rewrite assoc, <- (assoc (Some rfk)), (comm (Some rret1)) in HE'.
        destruct (Some rd · Some rret1) as [rret2 |] eqn: HR;
          [| apply erasure_not_empty in HE'; [contradiction | now erewrite (comm _ 0), !pcm_op_zero by apply _] ].
        exists w'' rfk rret2 s'; repeat (split; try assumption); [].
        eapply uni_pred, HWR; [| eexists; rewrite <- HR]; reflexivity.
Filip Sieczkowski's avatar
Filip Sieczkowski committed
816 817 818 819 820 821 822 823 824 825 826 827 828
    Qed.
    Next Obligation.
      intros w1 w2 EQw n r; simpl.
      split; intros Hp w'; intros; eapply Hp; try eassumption.
      - rewrite EQw; assumption.
      - rewrite <- EQw; assumption.
    Qed.
    Next Obligation.
      intros w1 w2 EQw n' r HLt; simpl; destruct n as [| n]; [now inversion HLt |]; split; intros Hp w2'; intros.
      - symmetry in EQw; assert (EQw' := extend_dist _ _ _ _ EQw HSw); assert (HSw' := extend_sub _ _ _ _ EQw HSw); symmetry in EQw'.
        edestruct (Hp (extend w2' w1)) as [HV [HS HF] ]; try eassumption;
        [eapply erasure_dist, HE; [eassumption | now eauto with arith] |].
        split; [clear HS HF | split; [clear HV HF | clear HV HS] ]; intros.
829
        + specialize (HV HV0); destruct HV as [w1'' [r' [s' [HSw'' [Hφ HE'] ] ] ] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
830 831
          assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
          assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
832 833
          exists (extend w1'' w2') r' s'; split; [assumption |].
          split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
834
          eapply (met_morph_nonexp _ _ (φ _)), Hφ; [eassumption | now eauto with arith].
835
        + specialize (HS _ _ _ _ HDec HStep); destruct HS as [w1'' [r' [s' [HSw'' [HWP HE'] ] ] ] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
836 837
          assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
          assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
838 839
          exists (extend w1'' w2') r' s'; split; [assumption |].
          split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
840
          eapply (met_morph_nonexp _ _ (WP _ _)), HWP; [eassumption | now eauto with arith].
841
        + specialize (HF _ _ HDec); destruct HF as [w1'' [rfk [rret [s' [HSw'' [HWR [HWF HE'] ] ] ] ] ] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
842 843
          assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
          assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
844
          exists (extend w1'' w2') rfk rret s'; split; [assumption |].
845 846
          split; [| split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ] ];
          eapply (met_morph_nonexp _ _ (WP _ _)); try eassumption; now eauto with arith.
Filip Sieczkowski's avatar
Filip Sieczkowski committed
847 848 849 850
      - assert (EQw' := extend_dist _ _ _ _ EQw HSw); assert (HSw' := extend_sub _ _ _ _ EQw HSw); symmetry in EQw'.
        edestruct (Hp (extend w2' w2)) as [HV [HS HF] ]; try eassumption;
        [eapply erasure_dist, HE; [eassumption | now eauto with arith] |].
        split; [clear HS HF | split; [clear HV HF | clear HV HS] ]; intros.
851
        + specialize (HV HV0); destruct HV as [w1'' [r' [s' [HSw'' [Hφ HE'] ] ] ] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
852 853
          assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
          assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
854 855
          exists (extend w1'' w2') r' s'; split; [assumption |].
          split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
856
          eapply (met_morph_nonexp _ _ (φ _)), Hφ; [eassumption | now eauto with arith].
857
        + specialize (HS _ _ _ _ HDec HStep); destruct HS as [w1'' [r' [s' [HSw'' [HWP HE'] ] ] ] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
858 859
          assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
          assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
860 861
          exists (extend w1'' w2') r' s'; split; [assumption |].
          split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
862
          eapply (met_morph_nonexp _ _ (WP _ _)), HWP; [eassumption | now eauto with arith].
863
        + specialize (HF _ _ HDec); destruct HF as [w1'' [rfk [rret [s' [HSw'' [HWR [HWF HE'] ] ] ] ] ] ].
Filip Sieczkowski's avatar
Filip Sieczkowski committed
864 865
          assert (EQw'' := extend_dist _ _ _ _ EQw' HSw''); symmetry in EQw'';
          assert (HSw''' := extend_sub _ _ _ _ EQw' HSw'').
866
          exists (extend w1'' w2') rfk rret s'; split; [assumption |].
867 868
          split; [| split; [| eapply erasure_dist, HE'; [eassumption | now eauto with arith] ] ];
          eapply (met_morph_nonexp _ _ (WP _ _)); try eassumption; now eauto with arith.
Filip Sieczkowski's avatar
Filip Sieczkowski committed
869