auth.v 11.3 KB
Newer Older
1
2
From iris.algebra Require Export excl local_updates.
From iris.algebra Require Import upred updates.
3
Local Arguments valid _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
Local Arguments validN _ _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
Record auth (A : Type) := Auth { authoritative : excl' A; auth_own : A }.
7
Add Printing Constructor auth.
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Arguments Auth {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Arguments authoritative {_} _.
10
Arguments auth_own {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
11
12
Notation "◯ a" := (Auth None a) (at level 20).
Notation "● a" := (Auth (Excl' a) ) (at level 20).
Robbert Krebbers's avatar
Robbert Krebbers committed
13

Robbert Krebbers's avatar
Robbert Krebbers committed
14
(* COFE *)
15
16
Section cofe.
Context {A : cofeT}.
17
Implicit Types a : excl' A.
18
Implicit Types b : A.
19
Implicit Types x y : auth A.
20
21

Instance auth_equiv : Equiv (auth A) := λ x y,
22
  authoritative x  authoritative y  auth_own x  auth_own y.
23
Instance auth_dist : Dist (auth A) := λ n x y,
24
  authoritative x {n} authoritative y  auth_own x {n} auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26
Global Instance Auth_ne : Proper (dist n ==> dist n ==> dist n) (@Auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Proof. by split. Qed.
28
29
Global Instance Auth_proper : Proper (() ==> () ==> ()) (@Auth A).
Proof. by split. Qed.
30
Global Instance authoritative_ne: Proper (dist n ==> dist n) (@authoritative A).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Proof. by destruct 1. Qed.
32
33
Global Instance authoritative_proper : Proper (() ==> ()) (@authoritative A).
Proof. by destruct 1. Qed.
34
Global Instance own_ne : Proper (dist n ==> dist n) (@auth_own A).
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Proof. by destruct 1. Qed.
36
Global Instance own_proper : Proper (() ==> ()) (@auth_own A).
37
Proof. by destruct 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
38

39
Instance auth_compl : Compl (auth A) := λ c,
40
  Auth (compl (chain_map authoritative c)) (compl (chain_map auth_own c)).
41
Definition auth_cofe_mixin : CofeMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
42
43
Proof.
  split.
44
  - intros x y; unfold dist, auth_dist, equiv, auth_equiv.
Robbert Krebbers's avatar
Robbert Krebbers committed
45
    rewrite !equiv_dist; naive_solver.
46
  - intros n; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
47
48
    + by intros ?; split.
    + by intros ?? [??]; split; symmetry.
49
    + intros ??? [??] [??]; split; etrans; eauto.
50
  - by intros ? [??] [??] [??]; split; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
51
  - intros n c; split. apply (conv_compl n (chain_map authoritative c)).
52
    apply (conv_compl n (chain_map auth_own c)).
Robbert Krebbers's avatar
Robbert Krebbers committed
53
Qed.
54
Canonical Structure authC := CofeT (auth A) auth_cofe_mixin.
55
56
57
58
59
60

Global Instance Auth_timeless a b :
  Timeless a  Timeless b  Timeless (Auth a b).
Proof. by intros ?? [??] [??]; split; apply: timeless. Qed.
Global Instance auth_discrete : Discrete A  Discrete authC.
Proof. intros ? [??]; apply _. Qed.
61
Global Instance auth_leibniz : LeibnizEquiv A  LeibnizEquiv (auth A).
62
Proof. by intros ? [??] [??] [??]; f_equal/=; apply leibniz_equiv. Qed.
63
64
65
End cofe.

Arguments authC : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
67

(* CMRA *)
68
Section cmra.
69
Context {A : ucmraT}.
70
71
Implicit Types a b : A.
Implicit Types x y : auth A.
72

73
74
Instance auth_valid : Valid (auth A) := λ x,
  match authoritative x with
75
76
  | Excl' a => ( n, auth_own x {n} a)   a
  | None =>  auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  | ExclBot' => False
78
79
  end.
Global Arguments auth_valid !_ /.
80
Instance auth_validN : ValidN (auth A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
81
  match authoritative x with
82
83
  | Excl' a => auth_own x {n} a  {n} a
  | None => {n} auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
84
  | ExclBot' => False
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  end.
86
Global Arguments auth_validN _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
Instance auth_pcore : PCore (auth A) := λ x,
88
  Some (Auth (core (authoritative x)) (core (auth_own x))).
89
Instance auth_op : Op (auth A) := λ x y,
90
  Auth (authoritative x  authoritative y) (auth_own x  auth_own y).
91

92
Lemma auth_included (x y : auth A) :
93
  x  y  authoritative x  authoritative y  auth_own x  auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
94
95
96
97
Proof.
  split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
  intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
98
99

Lemma authoritative_validN n x : {n} x  {n} authoritative x.
Robbert Krebbers's avatar
Robbert Krebbers committed
100
Proof. by destruct x as [[[]|]]. Qed.
101
Lemma auth_own_validN n x : {n} x  {n} auth_own x.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Proof. destruct x as [[[]|]]; naive_solver eauto using cmra_validN_includedN. Qed.
103

104
105
Lemma auth_valid_discrete `{CMRADiscrete A} x :
   x  match authoritative x with
106
107
        | Excl' a => auth_own x  a   a
        | None =>  auth_own x
108
109
110
111
112
113
        | ExclBot' => False
        end.
Proof.
  destruct x as [[[?|]|] ?]; simpl; try done.
  setoid_rewrite <-cmra_discrete_included_iff; naive_solver eauto using 0.
Qed.
114
115
Lemma auth_valid_discrete_2 `{CMRADiscrete A} a b :  ( a   b)  b  a   a.
Proof. by rewrite auth_valid_discrete /= left_id. Qed.
116

117
118
119
120
121
122
123
124
Lemma authoritative_valid  x :  x   authoritative x.
Proof. by destruct x as [[[]|]]. Qed.
Lemma auth_own_valid `{CMRADiscrete A} x :  x   auth_own x.
Proof.
  rewrite auth_valid_discrete.
  destruct x as [[[]|]]; naive_solver eauto using cmra_valid_included.
Qed.

125
Lemma auth_cmra_mixin : CMRAMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
126
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
128
  apply cmra_total_mixin.
  - eauto.
129
130
  - by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
  - by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
133
  - intros n [x a] [y b] [Hx Ha]; simpl in *.
    destruct Hx as [?? Hx|]; first destruct Hx; intros ?; cofe_subst; auto.
  - intros [[[?|]|] ?]; rewrite /= ?cmra_included_includedN ?cmra_valid_validN;
134
      naive_solver eauto using O.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
  - intros n [[[]|] ?] ?; naive_solver eauto using cmra_includedN_S, cmra_validN_S.
136
137
  - by split; simpl; rewrite assoc.
  - by split; simpl; rewrite comm.
Ralf Jung's avatar
Ralf Jung committed
138
139
  - by split; simpl; rewrite ?cmra_core_l.
  - by split; simpl; rewrite ?cmra_core_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
140
  - intros ??; rewrite! auth_included; intros [??].
141
    by split; simpl; apply cmra_core_mono.
142
  - assert ( n (a b1 b2 : A), b1  b2 {n} a  b1 {n} a).
143
    { intros n a b1 b2 <-; apply cmra_includedN_l. }
Robbert Krebbers's avatar
Robbert Krebbers committed
144
   intros n [[[a1|]|] b1] [[[a2|]|] b2];
145
     naive_solver eauto using cmra_validN_op_l, cmra_validN_includedN.
146
147
  - intros n x y1 y2 ? [??]; simpl in *.
    destruct (cmra_extend n (authoritative x) (authoritative y1)
148
      (authoritative y2)) as (ea1&ea2&?&?&?); auto using authoritative_validN.
149
    destruct (cmra_extend n (auth_own x) (auth_own y1) (auth_own y2))
150
151
      as (b1&b2&?&?&?); auto using auth_own_validN.
    by exists (Auth ea1 b1), (Auth ea2 b2).
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
154
Canonical Structure authR := CMRAT (auth A) auth_cofe_mixin auth_cmra_mixin.

155
Global Instance auth_cmra_discrete : CMRADiscrete A  CMRADiscrete authR.
156
157
Proof.
  split; first apply _.
Robbert Krebbers's avatar
Robbert Krebbers committed
158
  intros [[[?|]|] ?]; rewrite /= /cmra_valid /cmra_validN /=; auto.
159
160
161
162
  - setoid_rewrite <-cmra_discrete_included_iff.
    rewrite -cmra_discrete_valid_iff. tauto.
  - by rewrite -cmra_discrete_valid_iff.
Qed.
163

164
165
166
167
168
169
Instance auth_empty : Empty (auth A) := Auth  .
Lemma auth_ucmra_mixin : UCMRAMixin (auth A).
Proof.
  split; simpl.
  - apply (@ucmra_unit_valid A).
  - by intros x; constructor; rewrite /= left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  - do 2 constructor; simpl; apply (persistent_core _).
171
172
173
174
Qed.
Canonical Structure authUR :=
  UCMRAT (auth A) auth_cofe_mixin auth_cmra_mixin auth_ucmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
177
Global Instance auth_frag_persistent a : Persistent a  Persistent ( a).
Proof. do 2 constructor; simpl; auto. by apply persistent_core. Qed.

178
179
(** Internalized properties *)
Lemma auth_equivI {M} (x y : auth A) :
180
  x  y  (authoritative x  authoritative y  auth_own x  auth_own y : uPred M).
181
Proof. by uPred.unseal. Qed.
182
Lemma auth_validI {M} (x : auth A) :
183
   x  (match authoritative x with
184
185
          | Excl' a => ( b, a  auth_own x  b)   a
          | None =>  auth_own x
186
187
          | ExclBot' => False
          end : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
188
Proof. uPred.unseal. by destruct x as [[[]|]]. Qed.
189

190
Lemma auth_frag_op a b :  (a  b)   a   b.
Robbert Krebbers's avatar
Robbert Krebbers committed
191
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
Lemma auth_both_op a b : Auth (Excl' a) b   a   b.
193
Proof. by rewrite /op /auth_op /= left_id. Qed.
194
195
196
197
Lemma auth_frag_mono a b : a  b   a   b.
Proof. intros [c ->]. rewrite auth_frag_op. apply cmra_included_l. Qed.
Lemma auth_auth_valid a :  a   ( a).
Proof. intros; split; simpl; auto using ucmra_unit_leastN. Qed.
198

199
Lemma auth_update a af b :
200
  a ~l~> b @ Some af   (a  af)   a ~~>  (b  af)   b.
201
Proof.
202
  intros [Hab Hab']; apply cmra_total_update.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
  move=> n [[[?|]|] bf1] // =>-[[bf2 Ha] ?]; do 2 red; simpl in *.
204
205
206
  move: Ha; rewrite !left_id=> Hm; split; auto.
  exists bf2. rewrite -assoc.
  apply (Hab' _ (Some _)); auto. by rewrite /= assoc.
Ralf Jung's avatar
Ralf Jung committed
207
Qed.
208

209
210
211
212
213
Lemma auth_update_no_frame a b : a ~l~> b @ Some    a   a ~~>  b   b.
Proof.
  intros. rewrite -{1}(right_id _ _ a) -{1}(right_id _ _ b).
  by apply auth_update.
Qed.
214
215
216
217
218
Lemma auth_update_no_frag af b :  ~l~> b @ Some af   af ~~>  (b  af)   b.
Proof.
  intros. rewrite -{1}(left_id _ _ af) -{1}(right_id _ _ ( _)).
  by apply auth_update.
Qed.
219
220
End cmra.

221
Arguments authR : clear implicits.
222
Arguments authUR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
224

(* Functor *)
225
Definition auth_map {A B} (f : A  B) (x : auth A) : auth B :=
226
  Auth (excl_map f <$> authoritative x) (f (auth_own x)).
227
Lemma auth_map_id {A} (x : auth A) : auth_map id x = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
228
Proof. by destruct x as [[[]|]]. Qed.
229
230
Lemma auth_map_compose {A B C} (f : A  B) (g : B  C) (x : auth A) :
  auth_map (g  f) x = auth_map g (auth_map f x).
Robbert Krebbers's avatar
Robbert Krebbers committed
231
Proof. by destruct x as [[[]|]]. Qed.
232
233
Lemma auth_map_ext {A B : cofeT} (f g : A  B) x :
  ( x, f x  g x)  auth_map f x  auth_map g x.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
236
237
238
Proof.
  constructor; simpl; auto.
  apply option_fmap_setoid_ext=> a; by apply excl_map_ext.
Qed.
Instance auth_map_ne {A B : cofeT} n :
239
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@auth_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
240
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
242
  intros f g Hf [??] [??] [??]; split; simpl in *; [|by apply Hf].
  apply option_fmap_ne; [|done]=> x y ?; by apply excl_map_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
Qed.
244
Instance auth_map_cmra_monotone {A B : ucmraT} (f : A  B) :
245
  CMRAMonotone f  CMRAMonotone (auth_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
246
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
247
  split; try apply _.
Robbert Krebbers's avatar
Robbert Krebbers committed
248
  - intros n [[[a|]|] b]; rewrite /= /cmra_validN /=; try
249
      naive_solver eauto using cmra_monotoneN, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
  - by intros [x a] [y b]; rewrite !auth_included /=;
251
      intros [??]; split; simpl; apply: cmra_monotone.
Robbert Krebbers's avatar
Robbert Krebbers committed
252
Qed.
253
Definition authC_map {A B} (f : A -n> B) : authC A -n> authC B :=
254
  CofeMor (auth_map f).
255
Lemma authC_map_ne A B n : Proper (dist n ==> dist n) (@authC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
256
Proof. intros f f' Hf [[[a|]|] b]; repeat constructor; apply Hf. Qed.
Ralf Jung's avatar
Ralf Jung committed
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
Program Definition authRF (F : urFunctor) : rFunctor := {|
  rFunctor_car A B := authR (urFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(auth_map_id x).
  apply auth_map_ext=>y; apply urFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
  apply auth_map_ext=>y; apply urFunctor_compose.
Qed.

Instance authRF_contractive F :
  urFunctorContractive F  rFunctorContractive (authRF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
Qed.

280
281
282
Program Definition authURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A B := authUR (urFunctor_car F A B);
  urFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
Ralf Jung's avatar
Ralf Jung committed
283
|}.
284
Next Obligation.
285
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
286
Qed.
Ralf Jung's avatar
Ralf Jung committed
287
Next Obligation.
288
  intros F A B x. rewrite /= -{2}(auth_map_id x).
289
  apply auth_map_ext=>y; apply urFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
290
291
Qed.
Next Obligation.
292
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
293
  apply auth_map_ext=>y; apply urFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
294
Qed.
295

296
297
Instance authURF_contractive F :
  urFunctorContractive F  urFunctorContractive (authURF F).
298
Proof.
299
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
300
Qed.