program-logic.tex 18.4 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
2
\let\bar\overline

3
\section{Language}
4
\label{sec:language}
5
6
7
8
9
10

A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
\begin{itemize}
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
11
12
13
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\cup_n \textdom{Expr}^n)\]
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \overline\expr$ indicates that, when $\expr_1$ reduces to $\expr_2$, the new threads in the list $\overline\expr$ is forked off.
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, ()$, \ie when no threads are forked off. \\
14
15
16
17
18
19
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
\end{itemize}

\begin{defn}
  An expression $\expr$ and state $\state$ are \emph{reducible} (written $\red(\expr, \state)$) if
Ralf Jung's avatar
Ralf Jung committed
20
  \[ \Exists \expr_2, \state_2, \bar\expr. \expr,\state \step \expr_2,\state_2,\bar\expr \]
21
22
23
24
\end{defn}

\begin{defn}
  An expression $\expr$ is said to be \emph{atomic} if it reduces in one step to a value:
Ralf Jung's avatar
Ralf Jung committed
25
  \[ \All\state_1, \expr_2, \state_2, \bar\expr. \expr, \state_1 \step \expr_2, \state_2, \bar\expr \Ra \Exists \val_2. \toval(\expr_2) = \val_2 \]
26
27
28
29
30
31
32
33
\end{defn}

\begin{defn}[Context]
  A function $\lctx : \textdom{Expr} \to \textdom{Expr}$ is a \emph{context} if the following conditions are satisfied:
  \begin{enumerate}[itemsep=0pt]
  \item $\lctx$ does not turn non-values into values:\\
    $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
  \item One can perform reductions below $\lctx$:\\
Ralf Jung's avatar
Ralf Jung committed
34
    $\All \expr_1, \state_1, \expr_2, \state_2, \bar\expr. \expr_1, \state_1 \step \expr_2,\state_2,\bar\expr \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\bar\expr $
35
  \item Reductions stay below $\lctx$ until there is a value in the hole:\\
Ralf Jung's avatar
Ralf Jung committed
36
    $\All \expr_1', \state_1, \expr_2, \state_2, \bar\expr. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\bar\expr \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\bar\expr $
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  \end{enumerate}
\end{defn}

\subsection{Concurrent language}

For any language $\Lang$, we define the corresponding thread-pool semantics.

\paragraph{Machine syntax}
\[
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Expr}^n
\]

\judgment[Machine reduction]{\cfg{\tpool}{\state} \step
  \cfg{\tpool'}{\state'}}
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
53
  {\expr_1, \state_1 \step \expr_2, \state_2, \bar\expr}
54
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state_1} \step
Ralf Jung's avatar
Ralf Jung committed
55
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus \bar\expr}{\state_2}}
56
57
58
59
\end{mathpar}

\clearpage
\section{Program Logic}
60
\label{sec:program-logic}
61

62
This section describes how to build a program logic for an arbitrary language (\cf \Sref{sec:language}) on top of the logic described in \Sref{sec:dc-logic}.
Ralf Jung's avatar
Ralf Jung committed
63
So in the following, we assume that some language $\Lang$ was fixed.
Ralf Jung's avatar
Ralf Jung committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

\subsection{World Satisfaction, Invariants, View Shifts}

To introduce invariants into our logic, we will define weakest precondition to explicitly thread through the proof that all the invariants are maintained throughout program execution.
However, in order to be able to access invariants, we will also have to provide a way to \emph{temporarily disable} (or ``open'') them.
To this end, we use tokens that manage which invariants are currently enabled.

We assume to have the following four CMRAs available:
\begin{align*}
  \textmon{State} \eqdef{}& \authm(\exm(\textdom{State})) \\
  \textmon{Inv} \eqdef{}& \authm(\mathbb N \fpfn \agm(\latert \iPreProp)) \\
  \textmon{En} \eqdef{}& \pset{\mathbb N} \\
  \textmon{Dis} \eqdef{}& \finpset{\mathbb N}
\end{align*}
The last two are the tokens used for managing invariants, $\textmon{Inv}$ is the monoid used to manage the invariants themselves.
Finally, $\textmon{State}$ is used to provide the program with a view of the physical state of the machine.

Furthermore, we assume that instances named $\gname_{\textmon{State}}$, $\gname_{\textmon{Inv}}$, $\gname_{\textmon{En}}$ and $\gname_{\textmon{Dis}}$ of these CMRAs have been created.
(We will discuss later how this assumption is discharged.)

Ralf Jung's avatar
Ralf Jung committed
84
\paragraph{World Satisfaction.}
Ralf Jung's avatar
Ralf Jung committed
85
86
We can now define the assertion $W$ (\emph{world satisfaction}) which ensures that the enabled invariants are actually maintained:
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
87
  W \eqdef{}& \Exists I : \mathbb N \fpfn \Prop. \ownGhost{\gname_{\textmon{Inv}}}{\setComp{\iname \mapsto \authfull \aginj(\latertinj(\wIso(I(\iname))))}{\iname \in \dom(I)}} * \Sep_{\iname \in \dom(I)} \left( \later I(\iname) * \ownGhost{\gname_{\textmon{Dis}}}{\set{\iname}} \lor \ownGhost{\gname_{\textmon{En}}}{\set{\iname}} \right)
Ralf Jung's avatar
Ralf Jung committed
88
89
90
91
\end{align*}

\paragraph{Invariants.}
The following assertion states that an invariant with name $\iname$ exists and maintains assertion $\prop$:
Ralf Jung's avatar
Ralf Jung committed
92
\[ \knowInv\iname\prop \eqdef \ownGhost{\gname_{\textmon{Inv}}}{\set{\iname \mapsto \authfrag \aginj(\latertinj(\wIso(\prop)))}} \]
Ralf Jung's avatar
Ralf Jung committed
93

94
\paragraph{View Updates and View Shifts.}
Ralf Jung's avatar
Ralf Jung committed
95
Next, we define \emph{view updates}, which are essentially the same as the resource updates of the base logic ($\Sref{sec:base-logic}$), except that they also have access to world satisfaction and can enable and disable invariants:
96
\[ \pvs[\mask_1][\mask_2] \prop \eqdef W * \ownGhost{\gname_{\textmon{En}}}{\mask_1} \wand \upd\diamond (W * \ownGhost{\gname_{\textmon{En}}}{\mask_2} * \prop) \]
Ralf Jung's avatar
Ralf Jung committed
97
Here, $\mask_1$ and $\mask_2$ are the \emph{masks} of the view update, defining which invariants have to be (at least!) available before and after the update.
98
99
100
101
102
103
104
105
106
107
108
We use $\top$ as symbol for the largest possible mask, $\mathbb N$.
We will write $\pvs[\mask] \prop$ for $\pvs[\mask][\mask]\prop$.
%
View updates satisfy the following basic proof rules:
\begin{mathpar}
\infer[vup-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[vup-intro-mask]
{\mask_2 \subseteq \mask_1}
109
{\prop \proves \pvs[\mask_1][\mask_2]\pvs[\mask_2][\mask_1] \prop}
110
111
112
113
114

\infer[vup-trans]
{}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

115
116
117
\infer[vup-upd]
{}{\upd\prop \proves \pvs[\mask] \prop}

118
\infer[vup-frame]
119
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1 \uplus \mask_\f][\mask_2 \uplus \mask_\f] \propB * \prop}
120
121
122
123
124
125
126
127

\inferH{vup-update}
{\melt \mupd \meltsB}
{\ownM\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownM\meltB}

\infer[vup-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}
128
129
130
131
132
133
134
135
136
137
%
% \inferH{vup-allocI}
% {\text{$\mask$ is infinite}}
% {\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}
%gov
% \inferH{vup-openI}
% {}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}
%
% \inferH{vup-closeI}
% {}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}
138
\end{mathpar}
139
(There are no rules related to invariants here. Those rules will be discussed later, in \Sref{sec:invariants}.)
Ralf Jung's avatar
Ralf Jung committed
140
141
142
143
144
145

We further define the notions of \emph{view shifts} and \emph{linear view shifts}:
\begin{align*}
  \prop \vs[\mask_1][\mask_2] \propB \eqdef{}& \always(\prop \Ra \pvs[\mask_1][\mask_2] \propB) \\
  \prop \vsW[\mask_1][\mask_2] \propB \eqdef{}& \prop \wand \pvs[\mask_1][\mask_2] \propB
\end{align*}
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
These two are useful when writing down specifications, but for reasoning, it is typically easier to just work directly with view updates.
Still, just to give an idea of what view shifts ``are'', here are some proof rules for them:
\begin{mathparpagebreakable}
\inferH{vs-update}
  {\melt \mupd \meltsB}
  {\ownGhost\gname{\melt} \vs \exists \meltB \in \meltsB.\; \ownGhost\gname{\meltB}}
\and
\inferH{vs-trans}
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
\inferH{vs-imp}
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
\inferH{vs-mask-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB}
\and
\inferH{vs-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1][\mask_2] \propB * \propC}
\and
\inferH{vs-timeless}
  {\timeless{\prop}}
  {\later \prop \vs \prop}

173
174
175
176
177
178
179
180
181
182
% \inferH{vs-allocI}
%   {\infinite(\mask)}
%   {\later{\prop} \vs[\mask] \exists \iname\in\mask.\; \knowInv{\iname}{\prop}}
% \and
% \axiomH{vs-openI}
%   {\knowInv{\iname}{\prop} \proves \TRUE \vs[\{ \iname \} ][\emptyset] \later \prop}
% \and
% \axiomH{vs-closeI}
%   {\knowInv{\iname}{\prop} \proves \later \prop \vs[\emptyset][\{ \iname \} ] \TRUE }
%
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
\inferHB{vs-disj}
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
\inferHB{vs-exist}
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
\inferHB{vs-always}
  {\always\propB \proves \prop \vs[\mask_1][\mask_2] \propC}
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
\inferH{vs-false}
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
\end{mathparpagebreakable}

\subsection{Weakest Precondition}
Ralf Jung's avatar
Ralf Jung committed
201
202

Finally, we can define the core piece of the program logic, the assertion that reasons about program behavior: Weakest precondition, from which Hoare triples will be derived.
203
204

\paragraph{Defining weakest precondition.}
Ralf Jung's avatar
Ralf Jung committed
205
206
207
We assume that everything making up the definition of the language, \ie values, expressions, states, the conversion functions, reduction relation and all their properties, are suitably reflected into the logic (\ie they are part of the signature $\Sig$).

\begin{align*}
208
209
210
  \textdom{wp} \eqdef{}& \MU \textdom{wp}. \Lam \mask, \expr, \pred. \\
        & (\Exists\val. \toval(\expr) = \val \land \pvs[\mask] \prop) \lor {}\\
        & \Bigl(\toval(\expr) = \bot \land \All \state. \ownGhost{\gname_{\textmon{State}}}{\authfull \state} \vsW[\mask][\emptyset] {}\\
Ralf Jung's avatar
Ralf Jung committed
211
        &\qquad \red(\expr, \state) * \later\All \expr', \state', \bar\expr. (\expr, \state \step \expr', \state', \bar\expr) \vsW[\emptyset][\mask] {}\\
Ralf Jung's avatar
Ralf Jung committed
212
        &\qquad\qquad \ownGhost{\gname_{\textmon{State}}}{\authfull \state'} * \textdom{wp}(\mask, \expr', \pred) * \Sep_{\expr'' \in \bar\expr} \textdom{wp}(\top, \expr'', \Lam \any. \TRUE)\Bigr) \\
Ralf Jung's avatar
Ralf Jung committed
213
%  (* value case *)
214
  \wpre\expr[\mask]{\Ret\val. \prop} \eqdef{}& \textdom{wp}(\mask, \expr, \Lam\val.\prop)
Ralf Jung's avatar
Ralf Jung committed
215
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
216
If we leave away the mask, we assume it to default to $\top$.
Ralf Jung's avatar
Ralf Jung committed
217

Ralf Jung's avatar
Ralf Jung committed
218
219
220
221
This ties the authoritative part of \textmon{State} to the actual physical state of the reduction witnessed by the weakest precondition.
The fragment will then be available to the user of the logic, as their way of talking about the physical state:
\[ \ownPhys\state \eqdef \ownGhost{\gname_{\textmon{State}}}{\authfrag \state} \]

222
223
\paragraph{Laws of weakest precondition.}
The following rules can all be derived inside the DC logic:
224
225
226
227
228
\begin{mathpar}
\infer[wp-value]
{}{\prop[\val/\var] \proves \wpre{\val}[\mask]{\Ret\var.\prop}}

\infer[wp-mono]
229
230
{\mask_1 \subseteq \mask_2 \and \vctx,\var:\textlog{val}\mid\prop \proves \propB}
{\vctx\mid\wpre\expr[\mask_1]{\Ret\var.\prop} \proves \wpre\expr[\mask_2]{\Ret\var.\propB}}
231
232
233
234
235
236
237
238

\infer[pvs-wp]
{}{\pvs[\mask] \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}

\infer[wp-pvs]
{}{\wpre\expr[\mask]{\Ret\var.\pvs[\mask] \prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}

\infer[wp-atomic]
239
{\physatomic{\expr}}
240
241
242
243
244
245
246
247
{\pvs[\mask_1][\mask_2] \wpre\expr[\mask_2]{\Ret\var. \pvs[\mask_2][\mask_1]\prop}
 \proves \wpre\expr[\mask_1]{\Ret\var.\prop}}

\infer[wp-frame]
{}{\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}

\infer[wp-frame-step]
{\toval(\expr) = \bot \and \mask_2 \subseteq \mask_1}
248
{\wpre\expr[\mask_2]{\Ret\var.\prop} * \pvs[\mask_1][\mask_2]\later\pvs[\mask_2][\mask_1]\propB \proves \wpre\expr[\mask_1]{\Ret\var.\propB*\prop}}
249
250
251
252
253
254

\infer[wp-bind]
{\text{$\lctx$ is a context}}
{\wpre\expr[\mask]{\Ret\var. \wpre{\lctx(\ofval(\var))}[\mask]{\Ret\varB.\prop}} \proves \wpre{\lctx(\expr)}[\mask]{\Ret\varB.\prop}}
\end{mathpar}

255
256
We will also want rules that connect weakest preconditions to the operational semantics of the language.
In order to cover the most general case, those rules end up being more complicated:
257
258
\begin{mathpar}
  \infer[wp-lift-step]
259
  {\toval(\expr_1) = \bot}
260
  { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
261
        ~~\pvs[\mask][\emptyset] \Exists \state_1. \red(\expr_1,\state_1) * \later\ownPhys{\state_1} * {}\\\qquad~~ \later\All \expr_2, \state_2, \bar\expr. \Bigl( (\expr_1, \state_1 \step \expr_2, \state_2, \bar\expr) * \ownPhys{\state_2} \Bigr) \wand \pvs[\emptyset][\mask] \Bigl(\wpre{\expr_2}[\mask]{\Ret\var.\prop} * \Sep_{\expr_\f \in \bar\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}\Bigr)  {}\\\proves \wpre{\expr_1}[\mask]{\Ret\var.\prop}
262
263
264
265
266
      \end{inbox}} }
\\\\
  \infer[wp-lift-pure-step]
  {\toval(\expr_1) = \bot \and
   \All \state_1. \red(\expr_1, \state_1) \and
267
268
   \All \state_1, \expr_2, \state_2, \bar\expr. \expr_1,\state_1 \step \expr_2,\state_2,\bar\expr \Ra \state_1 = \state_2 }
  {\later\All \state, \expr_2, \bar\expr. (\expr_1,\state \step \expr_2, \state,\bar\expr)  \Ra \wpre{\expr_2}[\mask]{\Ret\var.\prop} * \Sep_{\expr_\f \in \bar\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask]{\Ret\var.\prop}}
269
270
\end{mathpar}

271
272
273
274
275
276
277
278
279
280
281

\paragraph{Adequacy of weakest precondition.}
~\ralf{TODO.}

\paragraph{Hoare triples.}
It turns out that weakest precondition is actually quite convenient to work with, in particular when perfoming these proofs in Coq.
Still, for a more traditional presentation, we can easily derive the notion of a Hoare triple:
\[
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \Ra \wpre{\expr}[\mask]{\Ret\val.\propB})}
\]

282
283
284
\subsection{Invariant Namespaces}
\label{sec:invariants}

285
286
287
288
289
290
291
292
\subsection{Lost stuff}
\ralf{TODO: Right now, this is a dump of all the things that moved out of the base...}



\paragraph{Laws of weakest preconditions.}

\paragraph{Lifting of operational semantics.}~
293
294
295
296
297

The adequacy statement concerning functional correctness reads as follows:
\begin{align*}
 &\All \mask, \expr, \val, \pred, \state, \melt, \state', \tpool'.
 \\&(\All n. \melt \in \mval_n) \Ra
Ralf Jung's avatar
Ralf Jung committed
298
 \\&( \ownPhys\state * \ownM\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
299
300
301
302
303
304
305
306
307
308
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
     \\&\pred(\val)
\end{align*}
where $\pred$ is a \emph{meta-level} predicate over values, \ie it can mention neither resources nor invariants.

Furthermore, the following adequacy statement shows that our weakest preconditions imply that the execution never gets \emph{stuck}: Every expression in the thread pool either is a value, or can reduce further.
\begin{align*}
 &\All \mask, \expr, \state, \melt, \state', \tpool'.
 \\&(\All n. \melt \in \mval_n) \Ra
Ralf Jung's avatar
Ralf Jung committed
309
 \\&( \ownPhys\state * \ownM\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
310
311
312
313
314
315
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{\tpool'} \Ra
     \\&\All\expr'\in\tpool'. \toval(\expr') \neq \bot \lor \red(\expr', \state')
\end{align*}
Notice that this is stronger than saying that the thread pool can reduce; we actually assert that \emph{every} non-finished thread can take a step.

Ralf Jung's avatar
Ralf Jung committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
\subsection{Iris model}

\paragraph{Semantic domain of assertions.}



\paragraph{Interpretation of assertions.}
$\iProp$ is a $\UPred$, and hence the definitions from \Sref{sec:upred-logic} apply.
We only have to define the interpretation of the missing connectives, the most interesting bits being primitive view shifts and weakest preconditions.

\typedsection{World satisfaction}{\wsat{-}{-}{-} : 
	\Delta\textdom{State} \times
	\Delta\pset{\mathbb{N}} \times
	\textdom{Res} \nfn \SProp }
\begin{align*}
  \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t]
    \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land 
    \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\
    \All\iname \in \mask, \prop \in \iProp. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname))
  \end{inbox}\\
	\wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))}
\end{align*}

\typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp}
\begin{align*}
	\mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned}
            \All \rs_\f, k, \mask_\f, \state.& 0 < k \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\&
            \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f}
          \end{aligned}}
\end{align*}

\typedsection{Weakest precondition}{\mathit{wp}_{-}(-, -) : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \nfn \iProp) \nfn \iProp}

$\textdom{wp}$ is defined as the fixed-point of a contractive function.
\begin{align*}
  \textdom{pre-wp}(\textdom{wp})(\mask, \expr, \pred) &\eqdef \Lam\rs. \setComp{n}{\begin{aligned}
        \All &\rs_\f, m, \mask_\f, \state. 0 \leq m < n \land \mask \disj \mask_\f \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\
        &(\All\val. \toval(\expr) = \val \Ra \Exists \rsB. m+1 \in \pred(\val)(\rsB) \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rsB \mtimes \rs_\f}) \land {}\\
        &(\toval(\expr) = \bot \land 0 < m \Ra \red(\expr, \state) \land \All \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \Ra {}\\
        &\qquad \Exists \rsB_1, \rsB_2. m \in \wsat\state{\mask \cup \mask_\f}{\rsB_1 \mtimes \rsB_2 \mtimes \rs_\f} \land  m \in \textdom{wp}(\mask, \expr_2, \pred)(\rsB_1) \land {}&\\
        &\qquad\qquad (\expr_\f = \bot \lor m \in \textdom{wp}(\top, \expr_\f, \Lam\any.\Lam\any.\mathbb{N})(\rsB_2))
    \end{aligned}} \\
  \textdom{wp}_\mask(\expr, \pred) &\eqdef \mathit{fix}(\textdom{pre-wp})(\mask, \expr, \pred)
\end{align*}


362
363
364
365
366

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: