saved_prop.v 4.01 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
From iris.base_logic Require Export own.
2
From iris.algebra Require Import agree.
Ralf Jung's avatar
Ralf Jung committed
3
From stdpp Require Import gmap.
4
From iris.proofmode Require Import tactics.
5
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
6 7
Import uPred.

8 9 10 11 12 13
(* "Saved anything" -- this can give you saved propositions, saved predicates,
   saved whatever-you-like. *)

Class savedAnythingG (Σ : gFunctors) (F : cFunctor) :=
  saved_anything_inG :> inG Σ (agreeR (F (iPreProp Σ))).
Definition savedAnythingΣ (F : cFunctor) `{!cFunctorContractive F} : gFunctors :=
14
  #[ GFunctor (agreeRF F) ].
15

16 17
Instance subG_savedAnythingΣ {Σ F} `{!cFunctorContractive F} :
  subG (savedAnythingΣ F) Σ  savedAnythingG Σ F.
18
Proof. solve_inG. Qed.
19

20
Definition saved_anything_own `{savedAnythingG Σ F}
21
    (γ : gname) (x : F (iProp Σ)) : iProp Σ :=
22
  own γ (to_agree $ (cFunctor_map F (iProp_fold, iProp_unfold) x)).
23 24
Typeclasses Opaque saved_anything_own.
Instance: Params (@saved_anything_own) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26 27
Section saved_anything.
  Context `{savedAnythingG Σ F}.
28
  Implicit Types x y : F (iProp Σ).
Robbert Krebbers's avatar
Robbert Krebbers committed
29 30
  Implicit Types γ : gname.

Robbert Krebbers's avatar
Robbert Krebbers committed
31 32
  Global Instance saved_anything_persistent γ x :
    Persistent (saved_anything_own γ x).
33
  Proof. rewrite /saved_anything_own; apply _. Qed.
34

35 36
  Lemma saved_anything_alloc_strong x (G : gset gname) :
    (|==>  γ, ⌜γ  G  saved_anything_own γ x)%I.
37
  Proof. by apply own_alloc_strong. Qed.
38

39
  Lemma saved_anything_alloc x : (|==>  γ, saved_anything_own γ x)%I.
40
  Proof. by apply own_alloc. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41

42 43
  Lemma saved_anything_agree γ x y :
    saved_anything_own γ x - saved_anything_own γ y - x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  Proof.
45 46 47
    iIntros "Hx Hy". rewrite /saved_anything_own.
    iDestruct (own_valid_2 with "Hx Hy") as "Hv".
    rewrite agree_validI agree_equivI.
48
    set (G1 := cFunctor_map F (iProp_fold, iProp_unfold)).
49
    set (G2 := cFunctor_map F (@iProp_unfold Σ, @iProp_fold Σ)).
50 51
    assert ( z, G2 (G1 z)  z) as help.
    { intros z. rewrite /G1 /G2 -cFunctor_compose -{2}[z]cFunctor_id.
52
      apply (ne_proper (cFunctor_map F)); split=>?; apply iProp_fold_unfold. }
53
    rewrite -{2}[x]help -{2}[y]help. by iApply f_equiv.
Robbert Krebbers's avatar
Robbert Krebbers committed
54
  Qed.
55 56 57 58 59 60 61 62 63 64 65
End saved_anything.

(** Provide specialized versions of this for convenience. **)

(* Saved propositions. *)
Notation savedPropG Σ := (savedAnythingG Σ ( )).
Notation savedPropΣ := (savedAnythingΣ ( )).

Definition saved_prop_own `{savedPropG Σ} (γ : gname) (P: iProp Σ) :=
  saved_anything_own (F :=  ) γ (Next P).

66 67 68 69
Lemma saved_prop_alloc_strong `{savedPropG Σ} (G : gset gname) (P: iProp Σ) :
  (|==>  γ, ⌜γ  G  saved_prop_own γ P)%I.
Proof. iApply saved_anything_alloc_strong. Qed.

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
Lemma saved_prop_alloc `{savedPropG Σ} (P: iProp Σ) :
  (|==>  γ, saved_prop_own γ P)%I.
Proof. iApply saved_anything_alloc. Qed.

Lemma saved_prop_agree `{savedPropG Σ} γ P Q :
  saved_prop_own γ P - saved_prop_own γ Q -  (P  Q).
Proof.
  iIntros "HP HQ". iApply later_equivI. iApply (saved_anything_agree with "HP HQ").
Qed.

(* Saved predicates. *)
Notation savedPredG Σ A := (savedAnythingG Σ (constCF A -n>  )).
Notation savedPredΣ A := (savedAnythingΣ (constCF A -n>  )).

Definition saved_pred_own `{savedPredG Σ A} (γ : gname) (f: A -n> iProp Σ) :=
  saved_anything_own (F := A -n>  ) γ (CofeMor Next  f).

87 88 89 90
Lemma saved_pred_alloc_strong `{savedPredG Σ A} (G : gset gname) (f: A -n> iProp Σ) :
  (|==>  γ, ⌜γ  G  saved_pred_own γ f)%I.
Proof. iApply saved_anything_alloc_strong. Qed.

91 92 93 94
Lemma saved_pred_alloc `{savedPredG Σ A} (f: A -n> iProp Σ) :
  (|==>  γ, saved_pred_own γ f)%I.
Proof. iApply saved_anything_alloc. Qed.

95 96 97
(* We put the `x` on the outside to make this lemma easier to apply. *)
Lemma saved_pred_agree `{savedPredG Σ A} γ f g x :
  saved_pred_own γ f - saved_pred_own γ g -  (f x  g x).
98
Proof.
99
  iIntros "Hx Hy". unfold saved_pred_own. iApply later_equivI.
100 101 102 103
  iDestruct (ofe_morC_equivI (CofeMor Next  f) (CofeMor Next  g)) as "[FE _]".
  simpl. iApply ("FE" with "[-]").
  iApply (saved_anything_agree with "Hx Hy").
Qed.