model.tex 12 KB
Newer Older
1
\section{Model and semantics}
2
\label{sec:model}
3 4 5

The semantics closely follows the ideas laid out in~\cite{catlogic}.

6
\subsection{Generic model of base logic}
Ralf Jung's avatar
Ralf Jung committed
7
\label{sec:upred-logic}
8

9
The base logic including equality, later, always, and a notion of ownership is defined on $\UPred(\monoid)$ for any CMRA $\monoid$.
10

Ralf Jung's avatar
Ralf Jung committed
11
\typedsection{Interpretation of base assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \UPred(\monoid)}
12 13
Remember that $\UPred(\monoid)$ is isomorphic to $\monoid \monra \SProp$.
We are thus going to define the assertions as mapping CMRA elements to sets of step-indices.
14

15
We introduce an additional logical connective $\ownM\melt$, which will later be used to encode all of $\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$.
16 17

\begin{align*}
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
	\Sem{\vctx \proves t =_\type u : \Prop}_\gamma &\eqdef
	\Lam \any. \setComp{n}{\Sem{\vctx \proves t : \type}_\gamma \nequiv{n} \Sem{\vctx \proves u : \type}_\gamma} \\
	\Sem{\vctx \proves \FALSE : \Prop}_\gamma &\eqdef \Lam \any. \emptyset \\
	\Sem{\vctx \proves \TRUE : \Prop}_\gamma &\eqdef \Lam \any. \mathbb{N} \\
	\Sem{\vctx \proves \prop \land \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cap \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
	\Sem{\vctx \proves \prop \lor \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \cup \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt) \\
	\Sem{\vctx \proves \prop \Ra \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{\begin{aligned}
            \All m, \meltB.& m \leq n \land \melt \mincl \meltB \land \meltB \in \mval_m \Ra {} \\
            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt)\end{aligned}}\\
	\Sem{\vctx \proves \All x : \type. \prop : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{ \All v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
	\Sem{\vctx \proves \Exists x : \type. \prop : \Prop}_\gamma &\eqdef
        \Lam \melt. \setComp{n}{ \Exists v \in \Sem{\type}. n \in \Sem{\vctx, x : \type \proves \prop : \Prop}_{\gamma[x \mapsto v]}(\melt) } \\
  ~\\
	\Sem{\vctx \proves \always{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \Sem{\vctx \proves \prop : \Prop}_\gamma(\mcore\melt) \\
	\Sem{\vctx \proves \later{\prop} : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{n = 0 \lor n-1 \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\melt)}\\
	\Sem{\vctx \proves \prop * \propB : \Prop}_\gamma &\eqdef \Lam\melt. \setComp{n}{\begin{aligned}\Exists \meltB_1, \meltB_2. &\melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \land {}\\& n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB_1) \land n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\meltB_2)\end{aligned}}
\\
	\Sem{\vctx \proves \prop \wand \propB : \Prop}_\gamma &\eqdef
	\Lam \melt. \setComp{n}{\begin{aligned}
            \All m, \meltB.& m \leq n \land  \melt\mtimes\meltB \in \mval_m \Ra {} \\
            & m \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\meltB) \Ra {}\\& m \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\melt\mtimes\meltB)\end{aligned}} \\
        \Sem{\vctx \proves \ownM{\melt} : \Prop}_\gamma &\eqdef \Lam\meltB. \setComp{n}{\melt \mincl[n] \meltB}  \\
        \Sem{\vctx \proves \mval(\melt) : \Prop}_\gamma &\eqdef \Lam\any. \setComp{n}{\melt \in \mval_n} \\
45 46
\end{align*}

Ralf Jung's avatar
Ralf Jung committed
47
For every definition, we have to show all the side-conditions: The maps have to be non-expansive and monotone.
48 49


Ralf Jung's avatar
Ralf Jung committed
50
\subsection{Iris model}
51

Ralf Jung's avatar
Ralf Jung committed
52 53 54 55
\paragraph{Semantic domain of assertions.}
The first complicated task in building a model of full Iris is defining the semantic model of $\Prop$.
We start by defining the functor that assembles the CMRAs we need to the global resource CMRA:
\begin{align*}
56
  \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \record{\wld: \agm(\latert \cofe), \pres: \exm(\textdom{State}), \ghostRes: \iFunc(\cofe^\op, \cofe)}
Ralf Jung's avatar
Ralf Jung committed
57
\end{align*}
58 59 60
Remember that $\iFunc$ is the user-chosen bifunctor from $\COFEs$ to $\CMRAs$.
$\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise.
Furthermore, if $F$ is locally contractive, then so is $\textdom{ResF}$.
Ralf Jung's avatar
Ralf Jung committed
61 62

Now we can write down the recursive domain equation:
63
\[ \iPreProp \cong \UPred(\textdom{ResF}(\iPreProp, \iPreProp)) \]
64
$\iPreProp$ is a COFE, which exists by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}.
Ralf Jung's avatar
Ralf Jung committed
65 66 67
We do not need to consider how the object is constructed. 
We only need the isomorphism, given by
\begin{align*}
68
  \Res &\eqdef \textdom{ResF}(\iPreProp, \iPreProp) \\
Ralf Jung's avatar
Ralf Jung committed
69 70 71 72
  \iProp &\eqdef \UPred(\Res) \\
	\wIso &: \iProp \nfn \iPreProp \\
	\wIso^{-1} &: \iPreProp \nfn \iProp
\end{align*}
73

Ralf Jung's avatar
Ralf Jung committed
74 75
We then pick $\iProp$ as the interpretation of $\Prop$:
\[ \Sem{\Prop} \eqdef \iProp \]
76 77


Ralf Jung's avatar
Ralf Jung committed
78 79
\paragraph{Interpretation of assertions.}
$\iProp$ is a $\UPred$, and hence the definitions from \Sref{sec:upred-logic} apply.
80
We only have to define the interpretation of the missing connectives, the most interesting bits being primitive view shifts and weakest preconditions.
81

Ralf Jung's avatar
Ralf Jung committed
82 83 84 85 86 87 88 89
\typedsection{World satisfaction}{\wsat{-}{-}{-} : 
	\Delta\textdom{State} \times
	\Delta\pset{\mathbb{N}} \times
	\textdom{Res} \nfn \SProp }
\begin{align*}
  \wsatpre(n, \mask, \state, \rss, \rs) & \eqdef \begin{inbox}[t]
    \rs \in \mval_{n+1} \land \rs.\pres = \exinj(\sigma) \land 
    \dom(\rss) \subseteq \mask \cap \dom( \rs.\wld) \land {}\\
90
    \All\iname \in \mask, \prop. (\rs.\wld)(\iname) \nequiv{n+1} \aginj(\latertinj(\wIso(\prop))) \Ra n \in \prop(\rss(\iname))
Ralf Jung's avatar
Ralf Jung committed
91 92 93
  \end{inbox}\\
	\wsat{\state}{\mask}{\rs} &\eqdef \set{0}\cup\setComp{n+1}{\Exists \rss : \mathbb{N} \fpfn \textdom{Res}. \wsatpre(n, \mask, \state, \rss, \rs \mtimes \prod_\iname \rss(\iname))}
\end{align*}
94

Ralf Jung's avatar
Ralf Jung committed
95
\typedsection{Primitive view-shift}{\mathit{pvs}_{-}^{-}(-) : \Delta(\pset{\mathbb{N}}) \times \Delta(\pset{\mathbb{N}}) \times \iProp \nfn \iProp}
Ralf Jung's avatar
Ralf Jung committed
96 97
\begin{align*}
	\mathit{pvs}_{\mask_1}^{\mask_2}(\prop) &= \Lam \rs. \setComp{n}{\begin{aligned}
Ralf Jung's avatar
Ralf Jung committed
98
            \All \rs_\f, m, \mask_\f, \state.& 0 < m \leq n \land (\mask_1 \cup \mask_2) \disj \mask_\f \land k \in \wsat\state{\mask_1 \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\&
Ralf Jung's avatar
Ralf Jung committed
99 100 101
            \Exists \rsB. k \in \prop(\rsB) \land k \in \wsat\state{\mask_2 \cup \mask_\f}{\rsB \mtimes \rs_\f}
          \end{aligned}}
\end{align*}
102

Ralf Jung's avatar
Ralf Jung committed
103
\typedsection{Weakest precondition}{\mathit{wp}_{-}(-, -) : \Delta(\pset{\mathbb{N}}) \times \Delta(\textdom{Exp}) \times (\Delta(\textdom{Val}) \nfn \iProp) \nfn \iProp}
104

Ralf Jung's avatar
Ralf Jung committed
105 106 107
$\textdom{wp}$ is defined as the fixed-point of a contractive function.
\begin{align*}
  \textdom{pre-wp}(\textdom{wp})(\mask, \expr, \pred) &\eqdef \Lam\rs. \setComp{n}{\begin{aligned}
Ralf Jung's avatar
Ralf Jung committed
108
        \All &\rs_\f, m, \mask_\f, \state. 0 \leq m < n \land \mask \disj \mask_\f \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rs \mtimes \rs_\f} \Ra {}\\
109
        &(\All\val. \toval(\expr) = \val \Ra \Exists \rsB. m+1 \in \pred(\rsB) \land m+1 \in \wsat\state{\mask \cup \mask_\f}{\rsB \mtimes \rs_\f}) \land {}\\
Ralf Jung's avatar
Ralf Jung committed
110
        &(\toval(\expr) = \bot \land 0 < m \Ra \red(\expr, \state) \land \All \expr_2, \state_2, \expr_\f. \expr,\state \step \expr_2,\state_2,\expr_\f \Ra {}\\
111
        &\qquad \Exists \rsB_1, \rsB_2. m \in \wsat\state{\mask \cup \mask_\f}{\rsB \mtimes \rs_\f} \land  m \in \textdom{wp}(\mask, \expr_2, \pred)(\rsB_1) \land {}&\\
Ralf Jung's avatar
Ralf Jung committed
112 113 114 115
        &\qquad\qquad (\expr_\f = \bot \lor m \in \textdom{wp}(\top, \expr_\f, \Lam\any.\Lam\any.\mathbb{N})(\rsB_2))
    \end{aligned}} \\
  \textdom{wp}_\mask(\expr, \pred) &\eqdef \mathit{fix}(\textdom{pre-wp})(\mask, \expr, \pred)
\end{align*}
116 117


Ralf Jung's avatar
Ralf Jung committed
118
\typedsection{Interpretation of program logic assertions}{\Sem{\vctx \proves \term : \Prop} : \Sem{\vctx} \nfn \iProp}
119

120
$\knowInv\iname\prop$, $\ownGGhost\melt$ and $\ownPhys\state$ are just syntactic sugar for forms of $\ownM{-}$.
Ralf Jung's avatar
Ralf Jung committed
121
\begin{align*}
122 123 124 125
	\knowInv{\iname}{\prop} &\eqdef \ownM{[\iname \mapsto \aginj(\latertinj(\wIso(\prop)))], \munit, \munit} \\
	\ownGGhost{\melt} &\eqdef \ownM{\munit, \munit, \melt} \\
	\ownPhys{\state} &\eqdef \ownM{\munit, \exinj(\state), \munit} \\
~\\
Ralf Jung's avatar
Ralf Jung committed
126 127 128 129 130
	\Sem{\vctx \proves \pvs[\mask_1][\mask_2] \prop : \Prop}_\gamma &\eqdef
	\textdom{pvs}^{\Sem{\vctx \proves \mask_2 : \textlog{InvMask}}_\gamma}_{\Sem{\vctx \proves \mask_1 : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \prop : \Prop}_\gamma) \\
	\Sem{\vctx \proves \wpre{\expr}[\mask]{\Ret\var.\prop} : \Prop}_\gamma &\eqdef
	\textdom{wp}_{\Sem{\vctx \proves \mask : \textlog{InvMask}}_\gamma}(\Sem{\vctx \proves \expr : \textlog{Expr}}_\gamma, \Lam\val. \Sem{\vctx \proves \prop : \Prop}_{\gamma[\var\mapsto\val]})
\end{align*}
131

Ralf Jung's avatar
Ralf Jung committed
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
\paragraph{Remaining semantic domains, and interpretation of non-assertion terms.}

The remaining domains are interpreted as follows:
\[
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\Sem{\textlog{InvName}} &\eqdef& \Delta \mathbb{N}  \\
\Sem{\textlog{InvMask}} &\eqdef& \Delta \pset{\mathbb{N}} \\
\Sem{\textlog{M}} &\eqdef& F(\iProp)
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\Sem{\textlog{Val}} &\eqdef& \Delta \textdom{Val} \\
\Sem{\textlog{Expr}} &\eqdef& \Delta \textdom{Expr} \\
\Sem{\textlog{State}} &\eqdef& \Delta \textdom{State} \\
\end{array}
\qquad\qquad
\begin{array}[t]{@{}l@{\ }c@{\ }l@{}}
\Sem{1} &\eqdef& \Delta \{ () \} \\
\Sem{\type \times \type'} &\eqdef& \Sem{\type} \times \Sem{\type} \\
\Sem{\type \to \type'} &\eqdef& \Sem{\type} \nfn \Sem{\type} \\
\end{array}
\]
154
For the remaining base types $\type$ defined by the signature $\Sig$, we pick an object $X_\type$ in $\cal U$ and define
Ralf Jung's avatar
Ralf Jung committed
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
\[
\Sem{\type} \eqdef X_\type
\]
For each function symbol $\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn$, we pick a function $\Sem{\sigfn} : \Sem{\type_1} \times \dots \times \Sem{\type_n} \nfn \Sem{\type_{n+1}}$.

\typedsection{Interpretation of non-propositional terms}{\Sem{\vctx \proves \term : \type} : \Sem{\vctx} \nfn \Sem{\type}}
\begin{align*}
	\Sem{\vctx \proves x : \type}_\gamma &\eqdef \gamma(x) \\
	\Sem{\vctx \proves \sigfn(\term_1, \dots, \term_n) : \type_{n+1}}_\gamma &\eqdef \Sem{\sigfn}(\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \dots, \Sem{\vctx \proves \term_n : \type_n}_\gamma) \\
	\Sem{\vctx \proves \Lam \var:\type. \term : \type \to \type'}_\gamma &\eqdef
	\Lam \termB : \Sem{\type}. \Sem{\vctx, \var : \type \proves \term : \type}_{\gamma[\var \mapsto \termB]} \\
	\Sem{\vctx \proves \term(\termB) : \type'}_\gamma &\eqdef
	\Sem{\vctx \proves \term : \type \to \type'}_\gamma(\Sem{\vctx \proves \termB : \type}_\gamma) \\
	\Sem{\vctx \proves \MU \var:\type. \term : \type}_\gamma &\eqdef
	\mathit{fix}(\Lam \termB : \Sem{\type}. \Sem{\vctx, x : \type \proves \term : \type}_{\gamma[x \mapsto \termB]}) \\
  ~\\
	\Sem{\vctx \proves () : 1}_\gamma &\eqdef () \\
	\Sem{\vctx \proves (\term_1, \term_2) : \type_1 \times \type_2}_\gamma &\eqdef (\Sem{\vctx \proves \term_1 : \type_1}_\gamma, \Sem{\vctx \proves \term_2 : \type_2}_\gamma) \\
	\Sem{\vctx \proves \pi_i(\term) : \type_i}_\gamma &\eqdef \pi_i(\Sem{\vctx \proves \term : \type_1 \times \type_2}_\gamma) \\
  ~\\
	\Sem{\vctx \proves \munit : \textlog{M}}_\gamma &\eqdef \munit \\
	\Sem{\vctx \proves \mcore\melt : \textlog{M}}_\gamma &\eqdef \mcore{\Sem{\vctx \proves \melt : \textlog{M}}_\gamma} \\
	\Sem{\vctx \proves \melt \mtimes \meltB : \textlog{M}}_\gamma &\eqdef
	\Sem{\vctx \proves \melt : \textlog{M}}_\gamma \mtimes \Sem{\vctx \proves \meltB : \textlog{M}}_\gamma
\end{align*}
%

An environment $\vctx$ is interpreted as the set of
finite partial functions $\rho$, with $\dom(\rho) = \dom(\vctx)$ and
$\rho(x)\in\Sem{\vctx(x)}$.

\paragraph{Logical entailment.}
We can now define \emph{semantic} logical entailment.

\typedsection{Interpretation of entailment}{\Sem{\vctx \mid \pfctx \proves \prop} : 2}

\[
\Sem{\vctx \mid \pfctx \proves \propB} \eqdef
\begin{aligned}[t]
\MoveEqLeft
\forall n \in \mathbb{N}.\;
\forall \rs \in \textdom{Res}.\; 
\forall \gamma \in \Sem{\vctx},\;
\\&
\bigl(\All \propB \in \pfctx. n \in \Sem{\vctx \proves \propB : \Prop}_\gamma(\rs)\bigr)
\Ra n \in \Sem{\vctx \proves \prop : \Prop}_\gamma(\rs)
\end{aligned}
\]

The soundness statement of the logic reads
\[ \vctx \mid \pfctx \proves \prop \Ra \Sem{\vctx \mid \pfctx \proves \prop} \]
206 207 208 209 210

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: