derived.v 55.7 KB
Newer Older
1
From iris.base_logic Require Export primitive.
2
Set Default Proof Using "Type".
3
Import upred.uPred primitive.uPred.
4 5 6 7 8

Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Instance: Params (@uPred_iff) 1.
Infix "↔" := uPred_iff : uPred_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
9 10 11 12 13 14 15 16 17 18
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
  Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
  (at level 20, n at level 9, P at level 20,
   format "▷^ n  P") : uPred_scope.
Notation "▷? p P" := (uPred_laterN (Nat.b2n p) P)
  (at level 20, p at level 9, P at level 20,
   format "▷? p  P") : uPred_scope.

19
Definition uPred_persistently_if {M} (p : bool) (P : uPred M) : uPred M :=
20
  (if p then  P else P)%I.
21 22 23
Instance: Params (@uPred_persistently_if) 2.
Arguments uPred_persistently_if _ !_ _/.
Notation "□? p P" := (uPred_persistently_if p P)
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  (at level 20, p at level 9, P at level 20, format "□? p  P").
25

26 27
Definition uPred_except_0 {M} (P : uPred M) : uPred M :=  False  P.
Notation "◇ P" := (uPred_except_0 P)
28
  (at level 20, right associativity) : uPred_scope.
29 30
Instance: Params (@uPred_except_0) 1.
Typeclasses Opaque uPred_except_0.
31

32
Class Timeless {M} (P : uPred M) := timelessP :  P   P.
33
Arguments timelessP {_} _ {_}.
34 35
Hint Mode Timeless + ! : typeclass_instances.
Instance: Params (@Timeless) 1.
36

37 38 39 40
Class Persistent {M} (P : uPred M) := persistent : P   P.
Arguments persistent {_} _ {_}.
Hint Mode Persistent + ! : typeclass_instances.
Instance: Params (@Persistent) 1.
41

42 43 44 45 46
Class Plain {M} (P : uPred M) := plain : P   P.
Arguments plain {_} _ {_}.
Hint Mode Plain + ! : typeclass_instances.
Instance: Params (@Plain) 1.

47
Module uPred.
48 49 50 51 52 53 54 55 56 57
Section derived.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)

(* Derived logical stuff *)
Lemma False_elim P : False  P.
58
Proof. by apply (pure_elim' False). Qed.
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
Lemma True_intro P : P  True.
Proof. by apply pure_intro. Qed.

Lemma and_elim_l' P Q R : (P  R)  P  Q  R.
Proof. by rewrite and_elim_l. Qed.
Lemma and_elim_r' P Q R : (Q  R)  P  Q  R.
Proof. by rewrite and_elim_r. Qed.
Lemma or_intro_l' P Q R : (P  Q)  P  Q  R.
Proof. intros ->; apply or_intro_l. Qed.
Lemma or_intro_r' P Q R : (P  R)  P  Q  R.
Proof. intros ->; apply or_intro_r. Qed.
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : (P  Ψ a)  P   a, Ψ a.
Proof. intros ->; apply exist_intro. Qed.
Lemma forall_elim' {A} P (Ψ : A  uPred M) : (P   a, Ψ a)   a, P  Ψ a.
Proof. move=> HP a. by rewrite HP forall_elim. Qed.

Hint Resolve pure_intro.
Hint Resolve or_elim or_intro_l' or_intro_r'.
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.

Lemma impl_intro_l P Q R : (Q  P  R)  P  Q  R.
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
Lemma impl_elim_l P Q : (P  Q)  P  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : P  (P  Q)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : (Q  P  R)  P  Q  R.
Proof. intros; apply impl_elim with P; auto. Qed.
90
Lemma impl_entails P Q : (P  Q)%I  P  Q.
91
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
92 93
Lemma entails_impl P Q : (P  Q)  (P  Q)%I.
Proof. intro. apply impl_intro_l. auto. Qed.
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

Lemma and_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma and_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply and_mono. Qed.

Lemma or_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma or_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply or_mono. Qed.

Lemma impl_mono P P' Q Q' : (Q  P)  (P'  Q')  (P  P')  Q  Q'.
Proof.
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
  apply impl_elim with P; eauto.
Qed.
Lemma forall_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof.
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
Qed.
Lemma exist_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof. intros HΦ. apply exist_elim=> a; rewrite (HΦ a); apply exist_intro. Qed.

Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance and_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance or_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
136 137 138
Global Instance impl_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
139 140 141
Global Instance forall_mono' A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
142 143 144
Global Instance forall_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
145
Global Instance exist_mono' A :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
146
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
147 148 149
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance exist_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
Proof. intros P1 P2; apply exist_mono. Qed.

Global Instance and_idem : IdemP () (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_idem : IdemP () (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_comm : Comm () (@uPred_and M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance True_and : LeftId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_True : RightId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_or : LeftId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_False : RightId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_assoc : Assoc () (@uPred_and M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance or_comm : Comm () (@uPred_or M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance or_assoc : Assoc () (@uPred_or M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance True_impl : LeftId () True%I (@uPred_impl M).
Proof.
  intros P; apply (anti_symm ()).
  - by rewrite -(left_id True%I uPred_and (_  _)%I) impl_elim_r.
  - by apply impl_intro_l; rewrite left_id.
Qed.
186 187 188 189 190
Lemma False_impl P : (False  P)  True.
Proof.
  apply (anti_symm ()); [by auto|].
  apply impl_intro_l. rewrite left_absorb. auto.
Qed.
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

Lemma exists_impl_forall {A} P (Ψ : A  uPred M) :
  (( x : A, Ψ x)  P)   x : A, Ψ x  P.
Proof.
  apply equiv_spec; split.
  - apply forall_intro=>x. by rewrite -exist_intro.
  - apply impl_intro_r, impl_elim_r', exist_elim=>x.
    apply impl_intro_r. by rewrite (forall_elim x) impl_elim_r.
Qed.

Lemma or_and_l P Q R : P  Q  R  (P  Q)  (P  R).
Proof.
  apply (anti_symm ()); first auto.
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
Qed.
Lemma or_and_r P Q R : P  Q  R  (P  R)  (Q  R).
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
Lemma and_or_l P Q R : P  (Q  R)  P  Q  P  R.
Proof.
  apply (anti_symm ()); last auto.
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
Qed.
Lemma and_or_r P Q R : (P  Q)  R  P  R  Q  R.
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
Lemma and_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
Proof.
  apply (anti_symm ()).
  - apply impl_elim_r'. apply exist_elim=>a. apply impl_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=>a. apply and_intro; first by rewrite and_elim_l.
    by rewrite -(exist_intro a) and_elim_r.
Qed.
Lemma and_exist_r {A} P (Φ: A  uPred M) : ( a, Φ a)  P   a, Φ a  P.
Proof.
  rewrite -(comm _ P) and_exist_l. apply exist_proper=>a. by rewrite comm.
Qed.
227 228 229 230 231 232 233
Lemma or_exist {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
Proof.
  apply (anti_symm ()).
  - apply exist_elim=> a. by rewrite -!(exist_intro a).
  - apply or_elim; apply exist_elim=> a; rewrite -(exist_intro a); auto.
Qed.
234

235
Lemma pure_elim φ Q R : (Q  ⌜φ⌝)  (φ  Q  R)  Q  R.
236 237 238 239
Proof.
  intros HQ HQR. rewrite -(idemp uPred_and Q) {1}HQ.
  apply impl_elim_l', pure_elim'=> ?. by apply entails_impl, HQR.
Qed.
Ralf Jung's avatar
Ralf Jung committed
240
Lemma pure_mono φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
241 242 243
Proof. intros; apply pure_elim with φ1; eauto. Qed.
Global Instance pure_mono' : Proper (impl ==> ()) (@uPred_pure M).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
244 245
Global Instance pure_flip_mono : Proper (flip impl ==> flip ()) (@uPred_pure M).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
246
Lemma pure_iff φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
247
Proof. intros [??]; apply (anti_symm _); auto using pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
248
Lemma pure_intro_l φ Q R : φ  (⌜φ⌝  Q  R)  Q  R.
249
Proof. intros ? <-; auto using pure_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
250
Lemma pure_intro_r φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
251
Proof. intros ? <-; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
252
Lemma pure_intro_impl φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
253
Proof. intros ? ->. eauto using pure_intro_l, impl_elim_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
254
Lemma pure_elim_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
255
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
256
Lemma pure_elim_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
257
Proof. intros; apply pure_elim with φ; eauto. Qed.
258

Ralf Jung's avatar
Ralf Jung committed
259
Lemma pure_True (φ : Prop) : φ  ⌜φ⌝  True.
260
Proof. intros; apply (anti_symm _); auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
261
Lemma pure_False (φ : Prop) : ¬φ  ⌜φ⌝  False.
262
Proof. intros; apply (anti_symm _); eauto using pure_elim. Qed.
263

Ralf Jung's avatar
Ralf Jung committed
264
Lemma pure_and φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
265 266 267 268 269
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[??]; auto.
  - eapply (pure_elim φ1); [auto|]=> ?. eapply (pure_elim φ2); auto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
270
Lemma pure_or φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
271 272 273 274 275
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[?|?]; auto.
  - apply or_elim; eapply pure_elim; eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
276
Lemma pure_impl φ1 φ2 : ⌜φ1  φ2  (⌜φ1  ⌜φ2).
277 278 279 280
Proof.
  apply (anti_symm _).
  - apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver.
  - rewrite -pure_forall_2. apply forall_intro=> ?.
281
    by rewrite -(left_id True uPred_and (_→_))%I (pure_True φ1) // impl_elim_r.
282
Qed.
Ralf Jung's avatar
Ralf Jung committed
283
Lemma pure_forall {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
284 285 286 287
Proof.
  apply (anti_symm _); auto using pure_forall_2.
  apply forall_intro=> x. eauto using pure_mono.
Qed.
Ralf Jung's avatar
Ralf Jung committed
288
Lemma pure_exist {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
289 290 291 292 293 294
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[x ?]. rewrite -(exist_intro x); auto.
  - apply exist_elim=> x. eauto using pure_mono.
Qed.

295
Lemma internal_eq_refl' {A : ofeT} (a : A) P : P  a  a.
296 297
Proof. rewrite (True_intro P). apply internal_eq_refl. Qed.
Hint Resolve internal_eq_refl'.
298
Lemma equiv_internal_eq {A : ofeT} P (a b : A) : a  b  P  a  b.
299
Proof. by intros ->. Qed.
300
Lemma internal_eq_sym {A : ofeT} (a b : A) : a  b  b  a.
301
Proof.
302 303
  rewrite (internal_eq_rewrite a b (λ b, b  a)%I ltac:(solve_proper)).
  by rewrite -internal_eq_refl True_impl.
304
Qed.
305 306 307 308 309 310 311 312 313
Lemma f_equiv {A B : ofeT} (f : A  B) `{!NonExpansive f} x y :
  x  y  f x  f y.
Proof.
  rewrite (internal_eq_rewrite x y (λ y, f x  f y)%I ltac:(solve_proper)).
  by rewrite -internal_eq_refl True_impl.
Qed.
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A  uPred M)
  {HΨ : Contractive Ψ} :  (a  b)  Ψ a  Ψ b.
Proof. move: HΨ=> /contractiveI ->. by rewrite (internal_eq_rewrite _ _ id). Qed.
314

Ralf Jung's avatar
Ralf Jung committed
315
Lemma pure_impl_forall φ P : (⌜φ⌝  P)  ( _ : φ, P).
316 317
Proof.
  apply (anti_symm _).
318
  - apply forall_intro=> ?. by rewrite pure_True // left_id.
319 320
  - apply impl_intro_l, pure_elim_l=> Hφ. by rewrite (forall_elim Hφ).
Qed.
Ralf Jung's avatar
Ralf Jung committed
321
Lemma pure_alt φ : ⌜φ⌝   _ : φ, True.
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
Proof.
  apply (anti_symm _).
  - eapply pure_elim; eauto=> H. rewrite -(exist_intro H); auto.
  - by apply exist_elim, pure_intro.
Qed.
Lemma and_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); first apply forall_intro=> -[]; auto.
  apply and_intro. by rewrite (forall_elim true). by rewrite (forall_elim false).
Qed.
Lemma or_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); last apply exist_elim=> -[]; auto.
  apply or_elim. by rewrite -(exist_intro true). by rewrite -(exist_intro false).
Qed.

338
Global Instance iff_ne : NonExpansive2 (@uPred_iff M).
339 340 341 342 343 344
Proof. unfold uPred_iff; solve_proper. Qed.
Global Instance iff_proper :
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.

Lemma iff_refl Q P : Q  P  P.
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.
345
Lemma iff_equiv P Q : (P  Q)%I  (P  Q).
346 347
Proof.
  intros HPQ; apply (anti_symm ());
348
    apply impl_entails; rewrite /uPred_valid HPQ /uPred_iff; auto.
349
Qed.
350
Lemma equiv_iff P Q : (P  Q)  (P  Q)%I.
351
Proof. intros ->; apply iff_refl. Qed.
352
Lemma internal_eq_iff P Q : P  Q  P  Q.
353
Proof.
354 355
  rewrite (internal_eq_rewrite P Q (λ Q, P  Q)%I ltac:(solve_proper)).
  by rewrite -(iff_refl True) True_impl.
356 357 358 359
Qed.

(* Derived BI Stuff *)
Hint Resolve sep_mono.
360
Lemma sep_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
361
Proof. by intros; apply sep_mono. Qed.
362
Lemma sep_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
363 364 365 366 367 368
Proof. by apply sep_mono. Qed.
Global Instance sep_mono' : Proper (() ==> () ==> ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Global Instance sep_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
369
Lemma wand_mono P P' Q Q' : (Q  P)  (P'  Q')  (P - P')  Q - Q'.
370 371 372 373 374
Proof.
  intros HP HQ; apply wand_intro_r. rewrite HP -HQ. by apply wand_elim_l'.
Qed.
Global Instance wand_mono' : Proper (flip () ==> () ==> ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
375 376 377
Global Instance wand_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
378 379 380 381 382 383 384 385 386 387 388 389

Global Instance sep_comm : Comm () (@uPred_sep M).
Proof. intros P Q; apply (anti_symm _); auto using sep_comm'. Qed.
Global Instance sep_assoc : Assoc () (@uPred_sep M).
Proof.
  intros P Q R; apply (anti_symm _); auto using sep_assoc'.
  by rewrite !(comm _ P) !(comm _ _ R) sep_assoc'.
Qed.
Global Instance True_sep : LeftId () True%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto using True_sep_1, True_sep_2. Qed.
Global Instance sep_True : RightId () True%I (@uPred_sep M).
Proof. by intros P; rewrite comm left_id. Qed.
390
Lemma sep_elim_l P Q : P  Q  P.
391
Proof. by rewrite (True_intro Q) right_id. Qed.
392 393 394
Lemma sep_elim_r P Q : P  Q  Q.
Proof. by rewrite (comm ())%I; apply sep_elim_l. Qed.
Lemma sep_elim_l' P Q R : (P  R)  P  Q  R.
395
Proof. intros ->; apply sep_elim_l. Qed.
396
Lemma sep_elim_r' P Q R : (Q  R)  P  Q  R.
397 398
Proof. intros ->; apply sep_elim_r. Qed.
Hint Resolve sep_elim_l' sep_elim_r'.
399
Lemma sep_intro_True_l P Q R : P%I  (R  Q)  R  P  Q.
400
Proof. by intros; rewrite -(left_id True%I uPred_sep R); apply sep_mono. Qed.
401
Lemma sep_intro_True_r P Q R : (R  P)  Q%I  R  P  Q.
402
Proof. by intros; rewrite -(right_id True%I uPred_sep R); apply sep_mono. Qed.
403
Lemma sep_elim_True_l P Q R : P  (P  R  Q)  R  Q.
404
Proof. by intros HP; rewrite -HP left_id. Qed.
405
Lemma sep_elim_True_r P Q R : P  (R  P  Q)  R  Q.
406
Proof. by intros HP; rewrite -HP right_id. Qed.
407
Lemma wand_intro_l P Q R : (Q  P  R)  P  Q - R.
408
Proof. rewrite comm; apply wand_intro_r. Qed.
409
Lemma wand_elim_l P Q : (P - Q)  P  Q.
410
Proof. by apply wand_elim_l'. Qed.
411
Lemma wand_elim_r P Q : P  (P - Q)  Q.
412
Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
413
Lemma wand_elim_r' P Q R : (Q  P - R)  P  Q  R.
414
Proof. intros ->; apply wand_elim_r. Qed.
415
Lemma wand_apply P Q R S : (P  Q - R)  (S  P  Q)  S  R.
Ralf Jung's avatar
Ralf Jung committed
416
Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
417
Lemma wand_frame_l P Q R : (Q - R)  P  Q - P  R.
418
Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
419
Lemma wand_frame_r P Q R : (Q - R)  Q  P - R  P.
420
Proof.
421
  apply wand_intro_l. rewrite ![(_  P)%I]comm -assoc.
422 423
  apply sep_mono_r, wand_elim_r.
Qed.
424
Lemma wand_diag P : (P - P)  True.
425
Proof. apply (anti_symm _); auto. apply wand_intro_l; by rewrite right_id. Qed.
426
Lemma wand_True P : (True - P)  P.
427 428
Proof.
  apply (anti_symm _); last by auto using wand_intro_l.
429
  eapply sep_elim_True_l; last by apply wand_elim_r. done.
430
Qed.
431
Lemma wand_entails P Q : (P - Q)%I  P  Q.
432 433 434
Proof.
  intros HPQ. eapply sep_elim_True_r; first exact: HPQ. by rewrite wand_elim_r.
Qed.
435 436
Lemma entails_wand P Q : (P  Q)  (P - Q)%I.
Proof. intro. apply wand_intro_l. auto. Qed.
437
Lemma wand_curry P Q R : (P - Q - R)  (P  Q - R).
438 439 440 441 442 443
Proof.
  apply (anti_symm _).
  - apply wand_intro_l. by rewrite (comm _ P) -assoc !wand_elim_r.
  - do 2 apply wand_intro_l. by rewrite assoc (comm _ Q) wand_elim_r.
Qed.

444
Lemma sep_and P Q : (P  Q)  (P  Q).
445
Proof. auto. Qed.
446
Lemma impl_wand_1 P Q : (P  Q)  P - Q.
447
Proof. apply wand_intro_r, impl_elim with P; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
448
Lemma pure_elim_sep_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
449
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
450
Lemma pure_elim_sep_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
451 452 453 454 455 456 457
Proof. intros; apply pure_elim with φ; eauto. Qed.

Global Instance sep_False : LeftAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.
Global Instance False_sep : RightAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.

458
Lemma entails_equiv_and P Q : (P  Q  P)  (P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Proof. split. by intros ->; auto. intros; apply (anti_symm _); auto. Qed.
460
Lemma sep_and_l P Q R : P  (Q  R)  (P  Q)  (P  R).
461
Proof. auto. Qed.
462
Lemma sep_and_r P Q R : (P  Q)  R  (P  R)  (Q  R).
463
Proof. auto. Qed.
464
Lemma sep_or_l P Q R : P  (Q  R)  (P  Q)  (P  R).
465 466 467 468
Proof.
  apply (anti_symm ()); last by eauto 8.
  apply wand_elim_r', or_elim; apply wand_intro_l; auto.
Qed.
469
Lemma sep_or_r P Q R : (P  Q)  R  (P  R)  (Q  R).
470
Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
471
Lemma sep_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
472 473 474 475 476 477
Proof.
  intros; apply (anti_symm ()).
  - apply wand_elim_r', exist_elim=>a. apply wand_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=> a; apply sep_mono; auto using exist_intro.
Qed.
478
Lemma sep_exist_r {A} (Φ: A  uPred M) Q: ( a, Φ a)  Q   a, Φ a  Q.
479
Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
480
Lemma sep_forall_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
481
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.
482
Lemma sep_forall_r {A} (Φ : A  uPred M) Q : ( a, Φ a)  Q   a, Φ a  Q.
483 484
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
(* Plainness modality *)
Global Instance plainly_mono' : Proper (() ==> ()) (@uPred_plainly M).
Proof. intros P Q; apply plainly_mono. Qed.
Global Instance naugth_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_plainly M).
Proof. intros P Q; apply plainly_mono. Qed.

Lemma plainly_elim P :  P  P.
Proof. by rewrite plainly_elim' persistently_elim. Qed.
Hint Resolve plainly_mono plainly_elim.
Lemma plainly_intro' P Q : ( P  Q)   P   Q.
Proof. intros <-. apply plainly_idemp. Qed.
Lemma plainly_idemp P :   P   P.
Proof. apply (anti_symm _); auto using plainly_idemp. Qed.

Lemma persistently_plainly P :   P   P.
Proof.
  apply (anti_symm _); auto using persistently_elim.
  by rewrite -plainly_elim' plainly_idemp.
Qed.
Lemma plainly_persistently P :   P   P.
Proof.
  apply (anti_symm _); auto using plainly_mono, persistently_elim.
  by rewrite -plainly_elim' plainly_idemp.
Qed.

Lemma plainly_pure φ :  ⌜φ⌝  ⌜φ⌝.
Proof.
  apply (anti_symm _); auto.
  apply pure_elim'=> Hφ.
  trans ( x : False,  True : uPred M)%I; [by apply forall_intro|].
  rewrite plainly_forall_2. auto using plainly_mono, pure_intro.
Qed.
Lemma plainly_forall {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using plainly_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma plainly_exist {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using plainly_exist_1.
  apply exist_elim=> x. by rewrite (exist_intro x).
Qed.
Lemma plainly_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt plainly_forall. by apply forall_proper=> -[]. Qed.
Lemma plainly_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt plainly_exist. by apply exist_proper=> -[]. Qed.
Lemma plainly_impl P Q :  (P  Q)   P   Q.
Proof.
  apply impl_intro_l; rewrite -plainly_and.
  apply plainly_mono, impl_elim with P; auto.
Qed.
Lemma plainly_internal_eq {A:ofeT} (a b : A) :  (a  b)  a  b.
Proof.
  apply (anti_symm ()); auto using persistently_elim.
540 541
  rewrite {1}(internal_eq_rewrite a b (λ b,  (a  b))%I ltac:(solve_proper)).
  by rewrite -internal_eq_refl plainly_pure True_impl.
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
Qed.

Lemma plainly_and_sep_l_1 P Q :  P  Q   P  Q.
Proof. by rewrite -persistently_plainly persistently_and_sep_l_1. Qed.
Lemma plainly_and_sep_l' P Q :  P  Q   P  Q.
Proof. apply (anti_symm ()); auto using plainly_and_sep_l_1. Qed.
Lemma plainly_and_sep_r' P Q : P   Q  P   Q.
Proof. by rewrite !(comm _ P) plainly_and_sep_l'. Qed.
Lemma plainly_sep_dup' P :  P   P   P.
Proof. by rewrite -plainly_and_sep_l' idemp. Qed.

Lemma plainly_and_sep P Q :  (P  Q)   (P  Q).
Proof.
  apply (anti_symm ()); auto.
  rewrite -{1}plainly_idemp plainly_and plainly_and_sep_l'; auto.
Qed.
Lemma plainly_sep P Q :  (P  Q)   P   Q.
Proof. by rewrite -plainly_and_sep -plainly_and_sep_l' plainly_and. Qed.

Lemma plainly_wand P Q :  (P - Q)   P -  Q.
Proof. by apply wand_intro_r; rewrite -plainly_sep wand_elim_l. Qed.
Lemma plainly_impl_wand P Q :  (P  Q)   (P - Q).
Proof.
  apply (anti_symm ()); [by rewrite -impl_wand_1|].
  apply plainly_intro', impl_intro_r.
  by rewrite plainly_and_sep_l' plainly_elim wand_elim_l.
Qed.
569
Lemma impl_wand_plainly P Q : ( P  Q)  ( P - Q).
570
Proof.
571
  apply (anti_symm ()); [by rewrite -impl_wand_1|].
572 573 574 575 576 577 578 579 580 581
  apply impl_intro_l. by rewrite plainly_and_sep_l' wand_elim_r.
Qed.
Lemma plainly_entails_l' P Q : (P   Q)  P   Q  P.
Proof. intros; rewrite -plainly_and_sep_l'; auto. Qed.
Lemma plainly_entails_r' P Q : (P   Q)  P  P   Q.
Proof. intros; rewrite -plainly_and_sep_r'; auto. Qed.

Lemma plainly_laterN n P :  ^n P  ^n  P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite plainly_later IH. Qed.

582
(* Always derived *)
583 584 585 586 587 588
Hint Resolve persistently_mono persistently_elim.
Global Instance persistently_mono' : Proper (() ==> ()) (@uPred_persistently M).
Proof. intros P Q; apply persistently_mono. Qed.
Global Instance persistently_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_persistently M).
Proof. intros P Q; apply persistently_mono. Qed.
589

590 591 592 593
Lemma persistently_intro' P Q : ( P  Q)   P   Q.
Proof. intros <-. apply persistently_idemp_2. Qed.
Lemma persistently_idemp P :   P   P.
Proof. apply (anti_symm _); auto using persistently_idemp_2. Qed.
594

595
Lemma persistently_pure φ :  ⌜φ⌝  ⌜φ⌝.
596
Proof. by rewrite -plainly_pure persistently_plainly. Qed.
597
Lemma persistently_forall {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
598
Proof.
599
  apply (anti_symm _); auto using persistently_forall_2.
600 601
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
602
Lemma persistently_exist {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
603
Proof.
604
  apply (anti_symm _); auto using persistently_exist_1.
605 606
  apply exist_elim=> x. by rewrite (exist_intro x).
Qed.
607 608 609 610 611
Lemma persistently_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt persistently_forall. by apply forall_proper=> -[]. Qed.
Lemma persistently_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt persistently_exist. by apply exist_proper=> -[]. Qed.
Lemma persistently_impl P Q :  (P  Q)   P   Q.
612
Proof.
613 614
  apply impl_intro_l; rewrite -persistently_and.
  apply persistently_mono, impl_elim with P; auto.
615
Qed.
616
Lemma persistently_internal_eq {A:ofeT} (a b : A) :  (a  b)  a  b.
617
Proof. by rewrite -plainly_internal_eq persistently_plainly. Qed.
618

619
Lemma persistently_and_sep_l P Q :  P  Q   P  Q.
620
Proof. apply (anti_symm ()); auto using persistently_and_sep_l_1. Qed.
621 622 623 624
Lemma persistently_and_sep_r P Q : P   Q  P   Q.
Proof. by rewrite !(comm _ P) persistently_and_sep_l. Qed.
Lemma persistently_sep_dup P :  P   P   P.
Proof. by rewrite -persistently_and_sep_l idemp. Qed.
625

626
Lemma persistently_and_sep P Q :  (P  Q)   (P  Q).
627 628
Proof.
  apply (anti_symm ()); auto.
629
  rewrite -{1}persistently_idemp persistently_and persistently_and_sep_l; auto.
630
Qed.
631
Lemma persistently_sep P Q :  (P  Q)   P   Q.
632
Proof. by rewrite -persistently_and_sep -persistently_and_sep_l persistently_and. Qed.
633

634 635
Lemma persistently_wand P Q :  (P - Q)   P -  Q.
Proof. by apply wand_intro_r; rewrite -persistently_sep wand_elim_l. Qed.
636
Lemma persistently_impl_wand P Q :  (P  Q)   (P - Q).
637
Proof.
638
  apply (anti_symm ()); [by rewrite -impl_wand_1|].
639
  apply persistently_intro', impl_intro_r.
640
  by rewrite persistently_and_sep_l persistently_elim wand_elim_l.
641
Qed.
642
Lemma impl_wand_persistently P Q : ( P  Q)  ( P - Q).
Ralf Jung's avatar
Ralf Jung committed
643
Proof.
644 645
  apply (anti_symm ()); [by rewrite -impl_wand_1|].
  apply impl_intro_l. by rewrite persistently_and_sep_l wand_elim_r.
Ralf Jung's avatar
Ralf Jung committed
646
Qed.
647 648 649 650
Lemma persistently_entails_l P Q : (P   Q)  P   Q  P.
Proof. intros; rewrite -persistently_and_sep_l; auto. Qed.
Lemma persistently_entails_r P Q : (P   Q)  P  P   Q.
Proof. intros; rewrite -persistently_and_sep_r; auto. Qed.
651

652 653
Lemma persistently_laterN n P :  ^n P  ^n  P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite persistently_later IH. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
654

655 656 657 658
Lemma wand_alt P Q : (P - Q)   R, R   (P  R  Q).
Proof.
  apply (anti_symm ()).
  - rewrite -(right_id True%I uPred_sep (P - Q)%I) -(exist_intro (P - Q)%I).
659
    apply sep_mono_r. rewrite -persistently_pure. apply persistently_mono, impl_intro_l.
660
    by rewrite wand_elim_r right_id.
661
  - apply exist_elim=> R. apply wand_intro_l. rewrite assoc -persistently_and_sep_r.
662
    by rewrite persistently_elim impl_elim_r.
663 664 665 666 667
Qed.
Lemma impl_alt P Q : (P  Q)   R, R   (P  R - Q).
Proof.
  apply (anti_symm ()).
  - rewrite -(right_id True%I uPred_and (P  Q)%I) -(exist_intro (P  Q)%I).
668
    apply and_mono_r. rewrite -persistently_pure. apply persistently_mono, wand_intro_l.
669
    by rewrite impl_elim_r right_id.
670
  - apply exist_elim=> R. apply impl_intro_l. rewrite assoc persistently_and_sep_r.
671
    by rewrite persistently_elim wand_elim_r.
672
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
673

674
(* Later derived *)
675
Hint Resolve later_mono.
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
Global Instance later_mono' : Proper (() ==> ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.
Global Instance later_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.

Lemma later_intro P : P   P.
Proof.
  rewrite -(and_elim_l ( P) P) -(löb ( P  P)).
  apply impl_intro_l. by rewrite {1}(and_elim_r ( P)).
Qed.

Lemma later_True :  True  True.
Proof. apply (anti_symm ()); auto using later_intro. Qed.
Lemma later_forall {A} (Φ : A  uPred M) : (  a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); auto using later_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
695 696
Lemma later_exist_2 {A} (Φ : A  uPred M) : ( a,  Φ a)   ( a, Φ a).
Proof. apply exist_elim; eauto using exist_intro. Qed.
697 698 699
Lemma later_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
700
  apply: anti_symm; [|apply later_exist_2].
701 702 703 704 705 706 707 708 709
  rewrite later_exist_false. apply or_elim; last done.
  rewrite -(exist_intro inhabitant); auto.
Qed.
Lemma later_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt later_forall. by apply forall_proper=> -[]. Qed.
Lemma later_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt later_exist. by apply exist_proper=> -[]. Qed.
Lemma later_impl P Q :  (P  Q)   P   Q.
Proof. apply impl_intro_l; rewrite -later_and; eauto using impl_elim. Qed.
710
Lemma later_wand P Q :  (P - Q)   P -  Q.
711 712 713 714
Proof. apply wand_intro_r; rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma later_iff P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
715
(* Iterated later modality *)
716
Global Instance laterN_ne m : NonExpansive (@uPred_laterN M m).
Robbert Krebbers's avatar
Robbert Krebbers committed
717 718 719 720 721 722 723 724 725
Proof. induction m; simpl. by intros ???. solve_proper. Qed.
Global Instance laterN_proper m :
  Proper (() ==> ()) (@uPred_laterN M m) := ne_proper _.

Lemma laterN_0 P : ^0 P  P.
Proof. done. Qed.
Lemma later_laterN n P : ^(S n) P   ^n P.
Proof. done. Qed.
Lemma laterN_later n P : ^(S n) P  ^n  P.
726
Proof. induction n; f_equiv/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
727
Lemma laterN_plus n1 n2 P : ^(n1 + n2) P  ^n1 ^n2 P.
728
Proof. induction n1; f_equiv/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
Lemma laterN_le n1 n2 P : n1  n2  ^n1 P  ^n2 P.
Proof. induction 1; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_mono n P Q : (P  Q)  ^n P  ^n Q.
Proof. induction n; simpl; auto. Qed.
Global Instance laterN_mono' n : Proper (() ==> ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Global Instance laterN_flip_mono' n :
  Proper (flip () ==> flip ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.

Lemma laterN_intro n P : P  ^n P.
Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_True n : ^n True  True.
Proof. apply (anti_symm ()); auto using laterN_intro. Qed.
Lemma laterN_forall {A} n (Φ : A  uPred M) : (^n  a, Φ a)  ( a, ^n Φ a).
746
Proof. induction n as [|n IH]; simpl; rewrite -?later_forall ?IH; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
747 748
Lemma laterN_exist_2 {A} n (Φ : A  uPred M) : ( a, ^n Φ a)  ^n ( a, Φ a).
Proof. apply exist_elim; eauto using exist_intro, laterN_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
749 750
Lemma laterN_exist `{Inhabited A} n (Φ : A  uPred M) :
  (^n  a, Φ a)   a, ^n Φ a.
751
Proof. induction n as [|n IH]; simpl; rewrite -?later_exist ?IH; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
752
Lemma laterN_and n P Q : ^n (P  Q)  ^n P  ^n Q.
753
Proof. induction n as [|n IH]; simpl; rewrite -?later_and ?IH; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
754
Lemma laterN_or n P Q : ^n (P  Q)  ^n P  ^n Q.
755
Proof. induction n as [|n IH]; simpl; rewrite -?later_or ?IH; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
756 757 758 759 760
Lemma laterN_impl n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof.
  apply impl_intro_l; rewrite -laterN_and; eauto using impl_elim, laterN_mono.
Qed.
Lemma laterN_sep n P Q : ^n (P  Q)  ^n P  ^n Q.
761
Proof. induction n as [|n IH]; simpl; rewrite -?later_sep ?IH; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
762 763 764 765 766 767 768
Lemma laterN_wand n P Q : ^n (P - Q)  ^n P - ^n Q.
Proof.
  apply wand_intro_r; rewrite -laterN_sep; eauto using wand_elim_l,laterN_mono.
Qed.
Lemma laterN_iff n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. by rewrite /uPred_iff laterN_and !laterN_impl. Qed.

769 770
(* Conditional persistently *)
Global Instance persistently_if_ne p : NonExpansive (@uPred_persistently_if M p).
771
Proof. solve_proper. Qed.
772
Global Instance persistently_if_proper p : Proper (() ==> ()) (@uPred_persistently_if M p).
773
Proof. solve_proper. Qed.
774
Global Instance persistently_if_mono p : Proper (() ==> ()) (@uPred_persistently_if M p).