cofe.v 13.1 KB
Newer Older
1
Require Export prelude.prelude.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
3
4
5
Obligation Tactic := idtac.

(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
6
Instance: Params (@dist) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
8
9
10
Notation "x ={ n }= y" := (dist n x y)
  (at level 70, n at next level, format "x  ={ n }=  y").
Hint Extern 0 (?x ={_}= ?x) => reflexivity.
Hint Extern 0 (_ ={_}= _) => symmetry; assumption.
11
12
13
Ltac cofe_subst :=
  repeat match goal with
  | _ => progress simplify_equality'
14
15
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
16
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Record chain (A : Type) `{Dist A} := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car n ={n}= chain_car i
}.
Arguments chain_car {_ _} _ _.
Arguments chain_cauchy {_ _} _ _ _ _.
Class Compl A `{Dist A} := compl : chain A  A.

Class Cofe A `{Equiv A, Compl A} := {
  equiv_dist x y : x  y   n, x ={n}= y;
  dist_equivalence n :> Equivalence (dist n);
  dist_S n x y : x ={S n}= y  x ={n}= y;
  dist_0 x y : x ={0}= y;
  conv_compl (c : chain A) n : compl c ={n}= c n
}.
Hint Extern 0 (_ ={0}= _) => apply dist_0.
Class Contractive `{Dist A, Dist B} (f : A -> B) :=
  contractive n : Proper (dist n ==> dist (S n)) f.

(** Bundeled version *)
Structure cofeT := CofeT {
  cofe_car :> Type;
  cofe_equiv : Equiv cofe_car;
  cofe_dist : Dist cofe_car;
  cofe_compl : Compl cofe_car;
  cofe_cofe : Cofe cofe_car
}.
Arguments CofeT _ {_ _ _ _}.
Add Printing Constructor cofeT.
Existing Instances cofe_equiv cofe_dist cofe_compl cofe_cofe.
48
49
50
51
52
Arguments cofe_car _ : simpl never.
Arguments cofe_equiv _ _ _ : simpl never.
Arguments cofe_dist _ _ _ _ : simpl never.
Arguments cofe_compl _ _ : simpl never.
Arguments cofe_cofe _ : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66

(** General properties *)
Section cofe.
  Context `{Cofe A}.
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
    * by intros x; rewrite equiv_dist.
    * by intros x y; rewrite !equiv_dist.
    * by intros x y z; rewrite !equiv_dist; intros; transitivity y.
  Qed.
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (dist n).
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
68
    * by transitivity x1; [|transitivity y1].
    * by transitivity x2; [|transitivity y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
69
70
71
72
73
74
75
76
77
78
  Qed.
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (dist n).
  Proof.
    intros x1 x2 Hx y1 y2 Hy.
    by rewrite equiv_dist in Hx, Hy; rewrite (Hx n), (Hy n).
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
  Lemma dist_le x y n n' : x ={n}= y  n'  n  x ={n'}= y.
  Proof. induction 2; eauto using dist_S. Qed.
79
  Instance ne_proper `{Cofe B} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
80
81
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
82
  Instance ne_proper_2 `{Cofe B, Cofe C} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
85
86
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n), (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
88
89
90
91
92
  Qed.
  Lemma compl_ne (c1 c2: chain A) n : c1 n ={n}= c2 n  compl c1 ={n}= compl c2.
  Proof. intros. by rewrite (conv_compl c1 n), (conv_compl c2 n). Qed.
  Lemma compl_ext (c1 c2 : chain A) : ( i, c1 i  c2 i)  compl c1  compl c2.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using compl_ne. Qed.
93
94
95
96
97
  Global Instance contractive_ne `{Cofe B} (f : A  B) `{!Contractive f} n :
    Proper (dist n ==> dist n) f | 100.
  Proof. by intros x1 x2 ?; apply dist_S, contractive. Qed.
  Global Instance contractive_proper `{Cofe B} (f : A  B) `{!Contractive f} :
    Proper (() ==> ()) f | 100 := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
End cofe.

Robbert Krebbers's avatar
Robbert Krebbers committed
100
101
102
103
104
105
(** Mapping a chain *)
Program Definition chain_map `{Dist A, Dist B} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A ? B ? f Hf c n i ?; apply Hf, chain_cauchy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
106
107
108
109
(** Timeless elements *)
Class Timeless `{Dist A, Equiv A} (x : A) := timeless y : x ={1}= y  x  y.
Arguments timeless {_ _ _} _ {_} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
110
(** Fixpoint *)
111
112
Program Definition fixpoint_chain `{Cofe A, Inhabited A} (f : A  A)
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter i f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
114
115
116
Next Obligation.
  intros A ???? f ? x n; induction n as [|n IH]; intros i ?; [done|].
  destruct i as [|i]; simpl; try lia; apply contractive, IH; auto with lia.
Qed.
117
118
Program Definition fixpoint `{Cofe A, Inhabited A} (f : A  A)
  `{!Contractive f} : A := compl (fixpoint_chain f).
Robbert Krebbers's avatar
Robbert Krebbers committed
119
120

Section fixpoint.
121
122
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
123
124
  Proof.
    apply equiv_dist; intros n; unfold fixpoint.
125
126
    rewrite (conv_compl (fixpoint_chain f) n).
    by rewrite (chain_cauchy (fixpoint_chain f) n (S n)) at 1 by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
  Qed.
128
129
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
    ( z, f z ={n}= g z)  fixpoint f ={n}= fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Proof.
131
132
    intros Hfg; unfold fixpoint.
    rewrite (conv_compl (fixpoint_chain f) n),(conv_compl (fixpoint_chain g) n).
Robbert Krebbers's avatar
Robbert Krebbers committed
133
134
135
    induction n as [|n IH]; simpl in *; [done|].
    rewrite Hfg; apply contractive, IH; auto using dist_S.
  Qed.
136
137
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
139
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
End fixpoint.
140
Global Opaque fixpoint.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
142

(** Function space *)
Robbert Krebbers's avatar
Robbert Krebbers committed
143
Record cofeMor (A B : cofeT) : Type := CofeMor {
Robbert Krebbers's avatar
Robbert Krebbers committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
  cofe_mor_car :> A  B;
  cofe_mor_ne n : Proper (dist n ==> dist n) cofe_mor_car
}.
Arguments CofeMor {_ _} _ {_}.
Add Printing Constructor cofeMor.
Existing Instance cofe_mor_ne.

Instance cofe_mor_proper `(f : cofeMor A B) : Proper (() ==> ()) f := _.
Instance cofe_mor_equiv {A B : cofeT} : Equiv (cofeMor A B) := λ f g,
   x, f x  g x.
Instance cofe_mor_dist (A B : cofeT) : Dist (cofeMor A B) := λ n f g,
   x, f x ={n}= g x.
Program Definition fun_chain `(c : chain (cofeMor A B)) (x : A) : chain B :=
  {| chain_car n := c n x |}.
Next Obligation. intros A B c x n i ?. by apply (chain_cauchy c). Qed.
Program Instance cofe_mor_compl (A B : cofeT) : Compl (cofeMor A B) := λ c,
  {| cofe_mor_car x := compl (fun_chain c x) |}.
Next Obligation.
  intros A B c n x y Hxy.
  rewrite (conv_compl (fun_chain c x) n), (conv_compl (fun_chain c y) n).
  simpl; rewrite Hxy; apply (chain_cauchy c); lia.
Qed.
Instance cofe_mor_cofe (A B : cofeT) : Cofe (cofeMor A B).
Proof.
  split.
  * intros X Y; split; [intros HXY n k; apply equiv_dist, HXY|].
    intros HXY k; apply equiv_dist; intros n; apply HXY.
  * intros n; split.
    + by intros f x.
    + by intros f g ? x.
    + by intros f g h ?? x; transitivity (g x).
  * by intros n f g ? x; apply dist_S.
  * by intros f g x.
  * intros c n x; simpl.
    rewrite (conv_compl (fun_chain c x) n); apply (chain_cauchy c); lia.
Qed.
180
181
182
183
184
Instance cofe_mor_car_ne A B n :
  Proper (dist n ==> dist n ==> dist n) (@cofe_mor_car A B).
Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
Instance cofe_mor_car_proper A B :
  Proper (() ==> () ==> ()) (@cofe_mor_car A B) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
185
186
187
188
Lemma cofe_mor_ext {A B} (f g : cofeMor A B) : f  g   x, f x  g x.
Proof. done. Qed.
Canonical Structure cofe_mor (A B : cofeT) : cofeT := CofeT (cofeMor A B).
Infix "-n>" := cofe_mor (at level 45, right associativity).
189
190
Instance cofe_more_inhabited (A B : cofeT)
  `{Inhabited B} : Inhabited (A -n> B) := populate (CofeMor (λ _, inhabitant)).
Robbert Krebbers's avatar
Robbert Krebbers committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

(** Identity and composition *)
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
  f1 ={n}= f2  g1 ={n}= g2  f1  g1 ={n}= f2  g2.
Proof. by intros Hf Hg x; simpl; rewrite (Hg x), (Hf (g2 x)). Qed.

(** Pre-composition as a functor *)
Local Instance ccompose_l_ne' {A B C} (f : B -n> A) n :
  Proper (dist n ==> dist n) (λ g : A -n> C, g  f).
Proof. by intros g1 g2 ?; apply ccompose_ne. Qed.
Definition ccompose_l {A B C} (f : B -n> A) : (A -n> C) -n> (B -n> C) :=
  CofeMor (λ g : A -n> C, g  f).
Instance ccompose_l_ne {A B C} : Proper (dist n ==> dist n) (@ccompose_l A B C).
Proof. by intros n f1 f2 Hf g x; apply ccompose_ne. Qed.

(** unit *)
Instance unit_dist : Dist unit := λ _ _ _, True.
Instance unit_compl : Compl unit := λ _, ().
Instance unit_cofe : Cofe unit.
Proof. by repeat split; try exists 0. Qed.

(** Product *)
Instance prod_dist `{Dist A, Dist B} : Dist (A * B) := λ n,
  prod_relation (dist n) (dist n).
Robbert Krebbers's avatar
Robbert Krebbers committed
221
222
223
224
Instance pair_ne `{Dist A, Dist B} :
  Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
Instance fst_ne `{Dist A, Dist B} : Proper (dist n ==> dist n) (@fst A B) := _.
Instance snd_ne `{Dist A, Dist B} : Proper (dist n ==> dist n) (@snd A B) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
225
Instance prod_compl `{Compl A, Compl B} : Compl (A * B) := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
226
  (compl (chain_map fst c), compl (chain_map snd c)).
Robbert Krebbers's avatar
Robbert Krebbers committed
227
228
229
230
231
232
233
234
Instance prod_cofe `{Cofe A, Cofe B} : Cofe (A * B).
Proof.
  split.
  * intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
    rewrite !equiv_dist; naive_solver.
  * apply _.
  * by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
  * by split.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
236
  * intros c n; split. apply (conv_compl (chain_map fst c) n).
    apply (conv_compl (chain_map snd c) n).
Robbert Krebbers's avatar
Robbert Krebbers committed
237
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
239
240
Instance pair_timeless `{Dist A, Equiv A, Dist B, Equiv B} (x : A) (y : B) :
  Timeless x  Timeless y  Timeless (x,y).
Proof. by intros ?? [x' y'] [??]; split; apply (timeless _). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
Canonical Structure prodC (A B : cofeT) : cofeT := CofeT (A * B).
242
Instance prod_map_ne `{Dist A, Dist A', Dist B, Dist B'} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
243
244
245
246
247
248
249
250
251
252
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

Typeclasses Opaque prod_dist.
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

(** Discrete cofe *)
Section discrete_cofe.
  Context `{Equiv A, @Equivalence A ()}.
  Instance discrete_dist : Dist A := λ n x y,
    match n with 0 => True | S n => x  y end.
  Instance discrete_compl : Compl A := λ c, c 1.
  Instance discrete_cofe : Cofe A.
  Proof.
    split.
    * intros x y; split; [by intros ? []|intros Hn; apply (Hn 1)].
    * intros [|n]; [done|apply _].
    * by intros [|n].
    * done.
    * intros c [|n]; [done|apply (chain_cauchy c 1 (S n)); lia].
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
269
270
  Global Instance discrete_timeless (x : A) : Timeless x.
  Proof. by intros y. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
  Definition discreteC : cofeT := CofeT A.
272
End discrete_cofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
Arguments discreteC _ {_ _}.
274

Robbert Krebbers's avatar
Robbert Krebbers committed
275
Definition leibnizC (A : Type) : cofeT := @discreteC A equivL _.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
277
Canonical Structure natC := leibnizC nat.
Canonical Structure boolC := leibnizC bool.
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
(** Later *)
Inductive later (A : Type) : Type := Later { later_car : A }.
Arguments Later {_} _.
Arguments later_car {_} _.
Section later.
  Instance later_equiv `{Equiv A} : Equiv (later A) := λ x y,
    later_car x  later_car y.
  Instance later_dist `{Dist A} : Dist (later A) := λ n x y,
    match n with 0 => True | S n => later_car x ={n}= later_car y end.
  Program Definition later_chain `{Dist A} (c : chain (later A)) : chain A :=
    {| chain_car n := later_car (c (S n)) |}.
  Next Obligation. intros A ? c n i ?; apply (chain_cauchy c (S n)); lia. Qed.
  Instance later_compl `{Compl A} : Compl (later A) := λ c,
    Later (compl (later_chain c)).
  Instance later_cofe `{Cofe A} : Cofe (later A).
  Proof.
    split.
    * intros x y; unfold equiv, later_equiv; rewrite !equiv_dist.
      split. intros Hxy [|n]; [done|apply Hxy]. intros Hxy n; apply (Hxy (S n)).
    * intros [|n]; [by split|split]; unfold dist, later_dist.
      + by intros [x].
      + by intros [x] [y].
      + by intros [x] [y] [z] ??; transitivity y.
    * intros [|n] [x] [y] ?; [done|]; unfold dist, later_dist; by apply dist_S.
    * done.
    * intros c [|n]; [done|by apply (conv_compl (later_chain c) n)].
  Qed.
  Canonical Structure laterC (A : cofeT) : cofeT := CofeT (later A).

Robbert Krebbers's avatar
Robbert Krebbers committed
308
309
  Definition later_map {A B} (f : A  B) (x : later A) : later B :=
    Later (f (later_car x)).
310
311
  Instance later_fmap_ne `{Cofe A, Cofe B} (f : A  B) :
    ( n, Proper (dist n ==> dist n) f) 
Robbert Krebbers's avatar
Robbert Krebbers committed
312
     n, Proper (dist n ==> dist n) (later_map f).
313
  Proof. intros Hf [|n] [x] [y] ?; do 2 red; simpl. done. by apply Hf. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
  Lemma later_fmap_id {A} (x : later A) : later_map id x = x.
315
316
  Proof. by destruct x. Qed.
  Lemma later_fmap_compose {A B C} (f : A  B) (g : B  C) (x : later A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
317
    later_map (g  f) x = later_map g (later_map f x).
318
319
  Proof. by destruct x. Qed.
  Definition laterC_map {A B} (f : A -n> B) : laterC A -n> laterC B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
320
    CofeMor (later_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
321
  Instance laterC_map_contractive (A B : cofeT) : Contractive (@laterC_map A B).
322
323
  Proof. intros n f g Hf n'; apply Hf. Qed.
End later.