collections.v 32.4 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4 5
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From iris.prelude Require Export base tactics orders.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8 9
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
Robbert Krebbers's avatar
Robbert Krebbers committed
10 11
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
Typeclasses Opaque collection_disjoint collection_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14 15 16

(** * Basic theorems *)
Section simple_collection.
  Context `{SimpleCollection A C}.
17 18
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
19 20 21 22 23 24 25 26 27 28 29

  Lemma elem_of_empty x : x    False.
  Proof. split. apply not_elem_of_empty. done. Qed.
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30 31
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
  Proof. done. Qed.
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
  Proof. firstorder. Qed.
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42 43
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46 47 48 49 50 51 52 53 54 55 56
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
57 58
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60

61
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
62
  Proof. by repeat intro; subst. Qed.
63
  Global Instance elem_of_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
64
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  Proof. intros ???; subst. firstorder. Qed.
Ralf Jung's avatar
Ralf Jung committed
66
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
67
  Proof. intros ??????. by rewrite !elem_of_disjoint; setoid_subst. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
  Proof.
    split.
71
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
Robbert Krebbers's avatar
Robbert Krebbers committed
72
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
73
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75
      intros. apply elem_of_union_r; auto.
  Qed.
76
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
Robbert Krebbers's avatar
Robbert Krebbers committed
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
End simple_collection.

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

Instance set_unfold_fallthrough P : SetUnfold P P | 1000. done. Qed.
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208 209 210
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
  Proof. constructor. rewrite elem_of_disjoint. naive_solver. Qed.
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
280
  try fast_done;
281 282 283 284 285 286 287 288 289 290 291 292 293
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

294 295 296 297
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

298 299 300
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
Robbert Krebbers's avatar
Robbert Krebbers committed
301 302 303 304 305
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.

Section of_option_list.
  Context `{SimpleCollection A C}.
306 307
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
308 309 310
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
311
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
312
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
313
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
  Qed.
315 316 317
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
318 319 320
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
321 322
End of_option_list.

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
339 340 341 342
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
343 344
End list_unfold.

345
(** * Guard *)
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
365 366 367
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
370
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
371 372 373 374 375
End collection_monad_base.

(** * More theorems *)
Section collection.
  Context `{Collection A C}.
376
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
377 378

  Global Instance: Lattice C.
379
  Proof. split. apply _. firstorder auto. set_solver. Qed.
380 381
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383 384 385
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
386
  Lemma non_empty_inhabited x X : x  X  X  .
387
  Proof. set_solver. Qed.
388
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
389
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
391
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
392
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
393
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
394
  Lemma difference_diag X : X  X  .
395
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
396
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
397
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
399
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
401
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
  Lemma disjoint_union_difference X Y : X  Y  (X  Y)  X  Y.
403
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
422
    Lemma disjoint_union_difference_L X Y : X  Y  (X  Y)  X = Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
423
    Proof. unfold_leibniz. apply disjoint_union_difference. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
424 425 426
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
    Context `{ (x : A) (X : C), Decision (x  X)}.
Robbert Krebbers's avatar
Robbert Krebbers committed
428 429 430 431 432 433 434 435 436 437
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
438
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
439
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
440
    Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
  End dec.
End collection.

Section collection_ops.
  Context `{CollectionOps A C}.

  Lemma elem_of_intersection_with_list (f : A  A  option A) Xs Y x :
    x  intersection_with_list f Y Xs   xs y,
      Forall2 () xs Xs  y  Y  foldr (λ x, (= f x)) (Some y) xs = Some x.
  Proof.
    split.
459
    - revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
Robbert Krebbers's avatar
Robbert Krebbers committed
460 461
      rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
      destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
462
      eexists (x1 :: xs), y. intuition (simplify_option_eq; auto).
463
    - intros (xs & y & Hxs & ? & Hx). revert x Hx.
464
      induction Hxs; intros; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
465 466 467 468 469 470 471 472 473
      rewrite elem_of_intersection_with. naive_solver.
  Qed.

  Lemma intersection_with_list_ind (P Q : A  Prop) f Xs Y :
    ( y, y  Y  P y) 
    Forall (λ X,  x, x  X  Q x) Xs 
    ( x y z, Q x  P y  f x y = Some z  P z) 
     x, x  intersection_with_list f Y Xs  P x.
  Proof.
474
    intros HY HXs Hf. induction Xs; simplify_option_eq; [done |].
Robbert Krebbers's avatar
Robbert Krebbers committed
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    intros x Hx. rewrite elem_of_intersection_with in Hx.
    decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
  Qed.
End collection_ops.

(** * Sets without duplicates up to an equivalence *)
Section NoDup.
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
492 493
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
494 495 496 497 498
  Qed.
  Global Instance: Proper (() ==> iff) set_NoDup.
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
499
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
500
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
501
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
503
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504 505 506

  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
507
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
508
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
509
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
510 511

  Lemma set_NoDup_empty: set_NoDup .
512
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
513 514
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
515
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
516 517 518 519
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
  Proof.
    intros Hin Hnodup [y [??]].
520
    rewrite (Hnodup x y) in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
521 522
  Qed.
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
523
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
525
  Proof. unfold set_NoDup. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
526 527 528 529 530 531 532 533 534 535
End NoDup.

(** * Quantifiers *)
Section quantifiers.
  Context `{SimpleCollection A B} (P : A  Prop).

  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
536
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
537
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
538
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
539
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
540
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
541
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
542
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
543
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
544
  Proof. unfold set_Forall. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546

  Lemma set_Exists_empty : ¬set_Exists .
547
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
549
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
550
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
551
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
552
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
553
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
554 555
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
556
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
End quantifiers.

Section more_quantifiers.
  Context `{SimpleCollection A B}.

  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
End more_quantifiers.

(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).

Section fresh.
  Context `{FreshSpec A C}.
586
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
587

588
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
589
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
590 591
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
Robbert Krebbers's avatar
Robbert Krebbers committed
592
  Proof.
593
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
Robbert Krebbers's avatar
Robbert Krebbers committed
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    apply IH. by rewrite E.
  Qed.

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
613
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
614 615 616 617 618 619 620

  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
  Proof.
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
621
    apply IH in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
622 623 624 625
  Qed.
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
  Proof.
    revert X. induction n; simpl; constructor; auto.
626
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
627 628 629 630 631 632 633 634 635 636 637
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
  Qed.
End fresh.

(** * Properties of implementations of collections that form a monad *)
Section collection_monad.
  Context `{CollectionMonad M}.

638 639
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
640
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
641 642
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
643
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
644 645
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
646
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
647 648
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
649
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
650 651
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
652
  Proof. intros X Y ?; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
653 654
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
655
  Proof. intros X Y [??]; split; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
656 657

  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
658
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
659
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
660
  Proof. set_solver. Qed.
661
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
662
    g  f <$> X  g <$> (f <$> X).
663
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
664 665
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
666
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
667 668
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
669
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
670 671
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
672
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
673 674 675 676 677

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
678
    - revert l. induction k; set_solver by eauto.
679
    - induction 1; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
680 681 682
  Qed.
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
    l  mapM f k  length l = length k.
683
  Proof. revert l; induction k; set_solver by eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
684 685
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
686
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
687 688 689 690 691 692 693 694 695 696 697
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
End collection_monad.
698 699 700 701 702 703

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
704 705
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
706
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
707 708
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
709 710 711
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
712
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
713 714 715 716 717 718
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
719
  Proof. intros [l ?]; exists l; set_solver. Qed.
720
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
721
  Proof. intros [l ?]; exists l; set_solver. Qed.
722 723 724 725 726
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
727
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
728
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
729
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
730
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
731
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
732 733 734 735
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
736
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
737
  Qed.
738
End more_finite.