algebra.tex 5.86 KB
 Ralf Jung committed Jan 31, 2016 1 \section{Algebraic Structures}  Ralf Jung committed Jan 31, 2016 2   Ralf Jung committed Feb 29, 2016 3 4 \subsection{COFE}  Ralf Jung committed Feb 29, 2016 5 6 7 8 \begin{defn}[Chain] Given some set $T$ and an indexed family $({\nequiv{n}} \subseteq T \times T)_{n \in \mathbb{N}}$ of equivalence relations, a \emph{chain} is a function $c : \mathbb{N} \to T$ such that $\All n, m. n < m \Ra c (m) \nequiv{n} c (n+1)$. \end{defn}  Ralf Jung committed Feb 29, 2016 9 \begin{defn}  Ralf Jung committed Feb 29, 2016 10  A \emph{complete ordered family of equivalences} (COFE) is a tuple $(T, ({\nequiv{n}} \subseteq T \times T)_{n \in \mathbb{N}}, \lim : \chain(T) \to T)$ satisfying  Ralf Jung committed Feb 29, 2016 11 12 13 14  \begin{align*} \All n. (\nequiv{n}) ~& \text{is an equivalence relation} \tagH{cofe-equiv} \\ \All n, m.& n \geq m \Ra (\nequiv{n}) \subseteq (\nequiv{m}) \tagH{cofe-mono} \\ \All x, y.& x = y \Lra (\All n. x \nequiv{n} y) \tagH{cofe-limit} \\  Ralf Jung committed Feb 29, 2016 15  \All n, c.& \lim(c) \nequiv{n} c(n+1) \tagH{cofe-compl}  Ralf Jung committed Feb 29, 2016 16 17 18 19 20 21 22 23  \end{align*} \end{defn} \ralf{Copy the explanation from the paper, when that one is more polished.} \subsection{CMRA} \begin{defn}  Ralf Jung committed Feb 29, 2016 24  A \emph{CMRA} is a tuple $(\monoid, (\mval_n \subseteq \monoid)_{n \in \mathbb{N}}, \munit: \monoid \to \monoid, (\mtimes) : \monoid \times \monoid \to \monoid, (\mdiv) : \monoid \times \monoid \to \monoid)$ satisfying  Ralf Jung committed Feb 29, 2016 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42  \begin{align*} \All n, m.& n \geq m \Ra V_n \subseteq V_m \tagH{cmra-valid-mono} \\ \All \melt, \meltB, \meltC.& (\melt \mtimes \meltB) \mtimes \meltC = \melt \mtimes (\meltB \mtimes \meltC) \tagH{cmra-assoc} \\ \All \melt, \meltB.& \melt \mtimes \meltB = \meltB \mtimes \melt \tagH{cmra-comm} \\ \All \melt.& \munit(\melt) \mtimes \melt = \melt \tagH{cmra-unit-id} \\ \All \melt.& \munit(\munit(\melt)) = \munit(\melt) \tagH{cmra-unit-idem} \\ \All \melt, \meltB.& \melt \leq \meltB \Ra \munit(\melt) \leq \munit(\meltB) \tagH{cmra-unit-mono} \\ \All n, \melt, \meltB.& (\melt \mtimes \meltB) \in \mval_n \Ra \melt \in \mval_n \tagH{cmra-unit-op} \\ \All \melt, \meltB.& \melt \leq \meltB \Ra \melt \mtimes (\meltB \mdiv \melt) = \meltB \tagH{cmra-div-op} \\ \All n, \melt, \meltB_1, \meltB_2.& \omit\rlap{$\melt \in \mval_n \land \melt \nequiv{n} \meltB_1 \mtimes \meltB_2 \Ra {}$} \\ &\Exists \meltC_1, \meltC_2. \melt = \meltC_1 \mtimes \meltC_2 \land \meltC_1 \nequiv{n} \meltB_1 \land \meltC_2 \nequiv{n} \meltB_2 \tagH{cmra-extend} \\ \text{where}\qquad\qquad\\ \melt \leq \meltB \eqdef{}& \Exists \meltC. \meltB = \melt \mtimes \meltC \tagH{cmra-incl} \end{align*} \end{defn} \ralf{Copy the rest of the explanation from the paper, when that one is more polished.}  Ralf Jung committed Feb 29, 2016 43 \paragraph{The division operator $\mdiv$.}  Ralf Jung committed Feb 29, 2016 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 One way to describe $\mdiv$ is to say that it extracts the witness from the extension order: If $\melt \leq \meltB$, then $\melt \mdiv \meltB$ computes the difference between the two elements (\ruleref{cmra-div-op}). Otherwise, $\mdiv$ can have arbitrary behavior. This means that, in classical logic, the division operator can be defined for any PCM using the axiom of choice, and it will trivially satisfy \ruleref{cmra-div-op}. However, notice that the division operator also has to be \emph{non-expansive} --- so if the carrier $\monoid$ is equipped with a non-trivial $\nequiv{n}$, there is an additional proof obligation here. This is crucial, for the following reason: Considering that the extension order is defined using \emph{equality}, there is a natural notion of a \emph{step-indexed extension} order using the step-indexed equivalence of the underlying COFE: $\melt \mincl{n} \meltB \eqdef \Exists \meltC. \meltB \nequiv{n} \melt \mtimes \meltC \tagH{cmra-inclM}$ One of the properties we would expect to hold is the usual correspondence between a step-indexed predicate and its non-step-indexed counterpart: $\All \melt, \meltB. \melt \leq \meltB \Lra (\All n. \melt \mincl{n} \meltB) \tagH{cmra-incl-limit}$ The right-to-left direction here is trick. For every $n$, we obtain a proof that $\melt \mincl{n} \meltB$. From this, we could extract a sequence of witnesses $(\meltC_m)_{m}$, and we need to arrive at a single witness $\meltC$ showing that $\melt \leq \meltB$. Without the division operator, there is no reason to believe that such a witness exists. However, since we can use the division operator, and since we know that this operator is \emph{non-expansive}, we can pick $\meltC \eqdef \meltB \mdiv \melt$, and then we can prove that this is indeed the desired witness. \ralf{Do we actually need this property anywhere?} \paragraph{The extension axiom (\ruleref{cmra-extend}).} Notice that the existential quantification in this axiom is \emph{constructive}, \ie it is a sigma type in Coq. The purpose of this axiom is to compute $\melt_1$, $\melt_2$ completing the following square: \ralf{Needs some magic to fix the baseline of the $\nequiv{n}$, or so} \begin{center} \begin{tikzpicture}[every edge/.style={draw=none}] \node (a) at (0, 0) {$\melt$}; \node (b) at (1.7, 0) {$\meltB$}; \node (b12) at (1.7, -1) {$\meltB_1 \mtimes \meltB_2$}; \node (a12) at (0, -1) {$\melt_1 \mtimes \melt_2$}; \path (a) edge node {$\nequiv{n}$} (b); \path (a12) edge node {$\nequiv{n}$} (b12); \path (a) edge node [rotate=90] {$=$} (a12); \path (b) edge node [rotate=90] {$=$} (b12); \end{tikzpicture}\end{center} where the $n$-equivalence at the bottom is meant to apply to the pairs of elements, \ie we demand $\melt_1 \nequiv{n} \meltB_1$ and $\melt_2 \nequiv{n} \meltB_2$. In other words, extension carries the decomposition of $\meltB$ into $\meltB_1$ and $\meltB_2$ over the $n$-equivalence of $\melt$ and $\meltB$, and yields a corresponding decomposition of $\melt$ into $\melt_1$ and $\melt_2$. This operation is needed to prove that $\later$ commutes with existential quantification and separating conjunction: \begin{mathpar} \axiom{\later(\Exists\var:\sort. \prop) \Lra \Exists\var:\sort. \later\prop} \and\axiom{\later (\prop * \propB) \Lra \later\prop * \later\propB} \end{mathpar} (This assumes that the sort $\sort$ is non-empty.)  Ralf Jung committed Jan 31, 2016 87 88 89 90 %%% Local Variables: %%% mode: latex %%% TeX-master: "iris" %%% End: