list.v 159 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From iris.prelude Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10

Arguments length {_} _.
Arguments cons {_} _ _.
Arguments app {_} _ _.
11 12 13 14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17 18 19

Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.

20
Arguments tail {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24 25 26 27 28 29 30
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

Robbert Krebbers's avatar
Robbert Krebbers committed
50
(** * Definitions *)
51 52 53 54 55 56
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
  match l with
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
  end.

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
  match l with
  | [] => []
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
  end.

(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
87
Instance: Params (@list_inserts) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89 90 91 92 93 94 95 96 97 98 99 100 101

(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
  match l with
  | [] => []
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
  end.

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
102 103
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
Robbert Krebbers's avatar
Robbert Krebbers committed
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  match l with [x] => Some x | _ => None end.

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l := let _ : Filter _ _ := @go in
  match l with
  | [] => []
  | x :: l => if decide (P x) then x :: filter P l else filter P l
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
  fix go l :=
  match l with
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.
123
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
124 125 126 127 128

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with 0 => [] | S n => x :: replicate n x end.
129
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131 132

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
133
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
134 135 136 137 138

(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
139
Instance: Params (@last) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
140 141 142 143 144 145 146 147 148 149

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
  end.
Arguments resize {_} !_ _ !_.
150
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152 153 154 155 156 157 158

(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
  end.
159
Instance: Params (@reshape) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
  fix go l :=
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.

(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with [] => [[]] | x :: l => permutations l = interleave x end.

(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
241 242
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
      if decide_rel (=) x1 x2
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
End prefix_suffix_ops.

(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
Infix "`sublist`" := sublist (at level 70) : C_scope.
270
Hint Extern 0 (_ `sublist` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
271 272 273 274 275 276 277 278 279 280

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
from [l1] while possiblity changing the order. *)
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
281
Hint Extern 0 (_ `contains` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
    end.
End contains_dec_help.

Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').

(** Set operations on lists *)
303 304 305
Definition included {A} (l1 l2 : list A) :=  x, x  l1  x  l2.
Infix "`included`" := included (at level 70) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
      then list_difference l k else x :: list_difference l k
    end.
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
      then x :: list_intersection l k else list_intersection l k
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.

(** * Basic tactics on lists *)
349
(** The tactic [discriminate_list] discharges a goal if it contains
Robbert Krebbers's avatar
Robbert Krebbers committed
350 351
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
352
Tactic Notation "discriminate_list" hyp(H) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
353 354
  apply (f_equal length) in H;
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
355 356
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
Robbert Krebbers's avatar
Robbert Krebbers committed
357

358
(** The tactic [simplify_list_eq] simplifies hypotheses involving
Robbert Krebbers's avatar
Robbert Krebbers committed
359 360
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
361
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
362 363
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
364
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
365 366
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
367
  intros ? Hl. apply app_inj_1; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
370
Ltac simplify_list_eq :=
Robbert Krebbers's avatar
Robbert Krebbers committed
371
  repeat match goal with
372
  | _ => progress simplify_eq/=
Robbert Krebbers's avatar
Robbert Krebbers committed
373 374
  | H : _ ++ _ = _ ++ _ |- _ => first
    [ apply app_inv_head in H | apply app_inv_tail in H
375 376
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
377 378 379 380 381 382 383 384 385 386
  | H : [?x] !! ?i = Some ?y |- _ =>
    destruct i; [change (Some x = Some y) in H | discriminate]
  end.

(** * General theorems *)
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

387
Global Instance: Inj2 (=) (=) (=) (@cons A).
Robbert Krebbers's avatar
Robbert Krebbers committed
388
Proof. by injection 1. Qed.
389
Global Instance:  k, Inj (=) (=) (k ++).
Robbert Krebbers's avatar
Robbert Krebbers committed
390
Proof. intros ???. apply app_inv_head. Qed.
391
Global Instance:  k, Inj (=) (=) (++ k).
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Proof. intros ???. apply app_inv_tail. Qed.
393
Global Instance: Assoc (=) (@app A).
Robbert Krebbers's avatar
Robbert Krebbers committed
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.

Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
Proof.
409
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
410 411 412
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
413
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
Robbert Krebbers's avatar
Robbert Krebbers committed
414 415 416 417 418 419
Qed.
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
  Decision (l = k) := list_eq_dec dec.
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
420
  option_reflect (λ x, l = [x]) (length l  1) (maybe (λ x, [x]) l).
Robbert Krebbers's avatar
Robbert Krebbers committed
421 422 423 424 425 426 427 428 429 430 431 432 433
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
Lemma nil_or_length_pos l : l = []  length l  0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0  l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
434
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
435 436 437
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
438
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
439 440 441 442 443 444 445 446 447 448 449 450 451
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Proof.
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
452
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
Robbert Krebbers's avatar
Robbert Krebbers committed
453 454
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
455
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
456 457
Qed.
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
458
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
459 460 461 462 463 464 465 466 467 468
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
469
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
470
      simplify_eq/=; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
471
    destruct (IH i) as [?|[??]]; auto with lia.
472
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
473 474 475 476 477 478
Qed.
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.

Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
479
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
480
Lemma alter_length f l i : length (alter f i l) = length l.
481
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
482
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
483
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
484 485 486
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
487
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
488
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
489
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
491
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
492 493 494 495 496 497
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
498
  - intros Hy. assert (j < length l).
Robbert Krebbers's avatar
Robbert Krebbers committed
499 500
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
501
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
502 503 504
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
505
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
506 507 508
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Proof.
509
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
510 511
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
512 513 514
Qed.
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
515
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
516 517
Lemma alter_app_r f l1 l2 i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
518
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
519 520 521 522 523 524 525
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
526
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
527 528
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
529
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
530 531
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
532
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
533 534
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
535
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
536 537
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
538
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
539
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
540
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
541 542 543 544 545 546 547
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
548
Proof. induction l1; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
587
  - intros Hy. assert (j < length l).
Robbert Krebbers's avatar
Robbert Krebbers committed
588 589
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
590
  - intuition. by rewrite list_lookup_inserts by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

(** ** Properties of the [elem_of] predicate *)
Lemma not_elem_of_nil x : x  [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil x : x  []  False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Proof.
  induction l1.
615 616
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
617 618 619 620 621 622 623 624 625 626
Qed.
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x  [y]  x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
627
  by exists (y :: l1), l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
628 629 630 631 632 633 634 635
Qed.
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
Proof.
636
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
637 638 639 640 641 642 643
Qed.
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
644
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
645
      setoid_rewrite elem_of_cons; naive_solver.
646
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
647
      simplify_eq; try constructor; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
Qed.

(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Proof.
  induction l; simpl.
664 665
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
666 667 668 669 670
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
671 672 673 674
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
675 676 677 678 679
Qed.
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
680 681
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
Robbert Krebbers's avatar
Robbert Krebbers committed
682 683 684 685 686 687 688
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
Proof.
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
689
  - rewrite elem_of_list_lookup. intros [i ?].
Robbert Krebbers's avatar
Robbert Krebbers committed
690
    by feed pose proof (Hl (S i) 0 x); auto.
691
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Robbert Krebbers's avatar
Robbert Krebbers committed
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
Qed.

Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
    | x :: l =>
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
    end.
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
  Proof.
    split; induction l; simpl; repeat case_decide;
713
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
  Qed.
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End no_dup_dec.

(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
733 734 735
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
736 737 738 739 740 741 742 743 744
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
745 746 747
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
Robbert Krebbers's avatar
Robbert Krebbers committed
748 749 750 751 752 753 754 755 756 757
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
758 759 760
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
Robbert Krebbers's avatar
Robbert Krebbers committed
761 762 763 764 765 766
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
767
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
Robbert Krebbers's avatar
Robbert Krebbers committed
768 769 770 771 772 773
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
774
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

(** ** Properties of the [filter] function *)
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.

(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x)  l !! i = Some x  P x.
  Proof.
806 807 808
    revert i; induction l; intros [] ?; repeat first
      [ match goal with x : prod _ _ |- _ => destruct x end
      | simplify_option_eq ]; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
809 810 811
  Qed.
  Lemma list_find_elem_of l x : x  l  P x  is_Some (list_find P l).
  Proof.
812
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
  Qed.
End find.

(** ** Properties of the [reverse] function *)
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length l : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
842
Global Instance: Inj (=) (=) (@reverse A).
Robbert Krebbers's avatar
Robbert Krebbers committed
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
Lemma sum_list_with_app (f : A  nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A  nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.

(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.

(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
869
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
870 871 872 873
Qed.
Lemma take_nil n : take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app l k : take (length l) (l ++ k) = l.
874
Proof. induction l; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
875 876 877
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Proof. intros ->. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1  take n ((l1 ++ l2) ++ l3) = l1.
878
Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
879
Lemma take_app_le l k n : n  length l  take n (l ++ k) = take n l.
880
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
881 882
Lemma take_plus_app l k n m :
  length l = n  take (n + m) (l ++ k) = l ++ take m k.
883
Proof. intros <-. induction l; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
884 885
Lemma take_app_ge l k n :
  length l  n  take n (l ++ k) = l ++ take (n - length l) k.
886
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
887
Lemma take_ge l n : length l  n  take n l = l.
888
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
889
Lemma take_take l n m : take n (take m l) = take (min n m) l.
890
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
891
Lemma take_idemp l n : take n (take n l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
892 893
Proof. by rewrite take_take, Min.min_idempotent. Qed.
Lemma take_length l n : length (take n l) = min n (length l).
894
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
Lemma take_length_le l n : n  length l  length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.
Lemma take_length_ge l n : length l  n  length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.
Lemma lookup_take l n i : i < n  take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_take_ge l n i : n  i  take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma take_alter f l n i : n  i  take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
910 911
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
912 913 914 915
Qed.
Lemma take_insert l n i x : n  i  take n (<[i:=x]>l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
916 917
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
918 919 920 921 922 923 924 925
Qed.

(** ** Properties of the [drop] function *)
Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_length l n : length (drop n l) = length l - n.
926
Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
Lemma drop_ge l n : length l  n  drop n l = [].
Proof. revert n. induction l; intros [|??]; simpl in *; auto with lia. Qed.
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.
Lemma drop_app_le l k n :
  n  length l  drop n (l ++ k) = drop n l ++ k.
Proof. revert n. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma drop_app l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_alt l k n : n = length l  drop n (l ++ k) = k.
Proof. intros ->. by apply drop_app. Qed.
Lemma drop_app3_alt l1 l2 l3 n :
  n = length l1  drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
942
Proof. intros ->. by rewrite <-(assoc_L (++)), drop_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
Lemma drop_app_ge l k n :
  length l  n  drop n (l ++ k) = drop (n - length l) k.
Proof.
  intros. rewrite <-(Nat.sub_add (length l) n) at 1 by done.
  by rewrite Nat.add_comm, <-drop_drop, drop_app.
Qed.
Lemma drop_plus_app l k n m :
  length l = n  drop (n + m) (l ++ k) = drop m k.
Proof. intros <-. by rewrite <-drop_drop, drop_app. Qed.
Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter f l n i : i < n  drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert l n i x : i < n  drop n (<[i:=x]>l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
965
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
966
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
967
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
968 969 970
Lemma drop_take_drop l n m : n  m  drop n (take m l) ++ drop m l = drop n l.
Proof.
  revert n m. induction l; intros [|?] [|?] ?;
971
    f_equal/=; auto using take_drop with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
972 973 974 975 976 977 978 979 980
Qed.

(** ** Properties of the [replicate] function *)
Lemma replicate_length n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
  replicate n x !! i = Some y  y = x  i < n.
Proof.
  split.
981 982
  - revert i. induction n; intros [|?]; naive_solver auto with lia.
  - intros [-> Hi]. revert i Hi.
Robbert Krebbers's avatar
Robbert Krebbers committed
983 984 985 986 987 988 989 990 991 992
    induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma lookup_replicate_1 n x y i :
  replicate n x !! i = Some y  y = x  i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n  replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_None n x i : n  i  replicate n x !! i = None.
Proof.
  rewrite eq_None_not_Some, Nat.le_ngt. split.
993 994
  - intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
  - intros Hx ?. destruct Hx. exists x; auto using lookup_replicate_2.
Robbert Krebbers's avatar
Robbert Krebbers committed
995 996
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
997
Proof. revert i. induction n; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
998 999 1000 1001 1002 1003
Lemma elem_of_replicate_inv x n y : x  replicate n y  x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate  n x.
Proof. done. Qed.
Lemma replicate_plus n m x :
  replicate (n + m) x = replicate n x ++ replicate m x.
1004
Proof. induction n; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1005
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
1006
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1007 1008 1009
Lemma take_replicate_plus n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n<