cmra.v 32.7 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Ralf Jung's avatar
Ralf Jung committed
3 4
Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.
5 6 7 8 9 10 11 12 13

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
14
Hint Extern 0 (_  _) => reflexivity.
15 16
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
17 18
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
19
Notation "✓{ n } x" := (validN n x)
20
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22 23
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
24
Notation "✓ x" := (valid x) (at level 20) : C_scope.
25

26
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Notation "x ≼{ n } y" := (includedN n x y)
28
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
Instance: Params (@includedN) 4.
30
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
Record CMRAMixin A `{Dist A, Equiv A, Core A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  (* setoids *)
34
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Ralf Jung's avatar
Ralf Jung committed
35
  mixin_cmra_core_ne n : Proper (dist n ==> dist n) core;
36
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
37
  (* valid *)
38
  mixin_cmra_valid_validN x :  x   n, {n} x;
39
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  (* monoid *)
41 42
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Ralf Jung's avatar
Ralf Jung committed
43 44 45
  mixin_cmra_core_l x : core x  x  x;
  mixin_cmra_core_idemp x : core (core x)  core x;
  mixin_cmra_core_preserving x y : x  y  core x  core y;
46
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
47 48 49
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }
Robbert Krebbers's avatar
Robbert Krebbers committed
50
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
51

Robbert Krebbers's avatar
Robbert Krebbers committed
52 53 54 55 56 57
(** Bundeled version *)
Structure cmraT := CMRAT {
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Ralf Jung's avatar
Ralf Jung committed
58
  cmra_core : Core cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  cmra_op : Op cmra_car;
60
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  cmra_validN : ValidN cmra_car;
62
  cmra_cofe_mixin : CofeMixin cmra_car;
63
  cmra_mixin : CMRAMixin cmra_car
Robbert Krebbers's avatar
Robbert Krebbers committed
64
}.
65
Arguments CMRAT _ {_ _ _ _ _ _ _} _ _.
66 67 68 69
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Ralf Jung's avatar
Ralf Jung committed
70
Arguments cmra_core : simpl never.
71
Arguments cmra_op : simpl never.
72
Arguments cmra_valid : simpl never.
73 74 75
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Add Printing Constructor cmraT.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Existing Instances cmra_core cmra_op cmra_valid cmra_validN.
78
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
79 80
Canonical Structure cmra_cofeC.

81 82 83 84 85 86
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Ralf Jung's avatar
Ralf Jung committed
87 88
  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof. apply (mixin_cmra_core_ne _ (cmra_mixin A)). Qed.
89 90
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
91 92
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
93 94
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
95 96 97 98
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Ralf Jung's avatar
Ralf Jung committed
99 100 101 102 103 104
  Lemma cmra_core_l x : core x  x  x.
  Proof. apply (mixin_cmra_core_l _ (cmra_mixin A)). Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof. apply (mixin_cmra_core_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_core_preserving x y : x  y  core x  core y.
  Proof. apply (mixin_cmra_core_preserving _ (cmra_mixin A)). Qed.
105 106
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
107
  Lemma cmra_extend n x y1 y2 :
108 109
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }.
110
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
111 112
End cmra_mixin.

Ralf Jung's avatar
Ralf Jung committed
113
(** * CMRAs with a unit element *)
114
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
115 116 117 118 119
`empty' element is the unit. *)
Class CMRAUnit (A : cmraT) `{Empty A} := {
  cmra_unit_valid :  ;
  cmra_unit_left_id :> LeftId ()  ();
  cmra_unit_timeless :> Timeless 
120
}.
Ralf Jung's avatar
Ralf Jung committed
121
Instance cmra_unit_inhabited `{CMRAUnit A} : Inhabited A := populate .
122

123 124 125 126
(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : core x  x.
Arguments persistent {_} _ {_}.

127
(** * Discrete CMRAs *)
128
Class CMRADiscrete (A : cmraT) := {
129 130 131 132
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
133
(** * Morphisms *)
134
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
135 136 137
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
  included_preserving x y : x  y  f x  f y
138
}.
139 140
Arguments validN_preserving {_ _} _ {_} _ _ _.
Arguments included_preserving {_ _} _ {_} _ _ _.
141

142
(** * Local updates *)
Ralf Jung's avatar
Ralf Jung committed
143 144
(** The idea is that lemams taking this class will usually have L explicit,
    and leave Lv implicit - it will be inferred by the typeclass machinery. *)
145 146 147
Class LocalUpdate {A : cmraT} (Lv : A  Prop) (L : A  A) := {
  local_update_ne n :> Proper (dist n ==> dist n) L;
  local_updateN n x y : Lv x  {n} (x  y)  L (x  y) {n} L x  y
148 149 150
}.
Arguments local_updateN {_ _} _ {_} _ _ _ _ _.

151
(** * Frame preserving updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Definition cmra_updateP {A : cmraT} (x : A) (P : A  Prop) :=  n z,
153
  {n} (x  z)   y, P y  {n} (y  z).
154
Instance: Params (@cmra_updateP) 1.
155
Infix "~~>:" := cmra_updateP (at level 70).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
Definition cmra_update {A : cmraT} (x y : A) :=  n z,
157
  {n} (x  z)  {n} (y  z).
158
Infix "~~>" := cmra_update (at level 70).
159
Instance: Params (@cmra_update) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
160

Robbert Krebbers's avatar
Robbert Krebbers committed
161
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
162
Section cmra.
163
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Implicit Types x y z : A.
165
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
166

167
(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
168
Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
169 170 171 172
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof.
  intros x1 x2 Hx y1 y2 Hy.
173
  by rewrite Hy (comm _ x1) Hx (comm _ y2).
174 175 176 177 178 179 180 181 182
Qed.
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
183 184 185 186
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
205 206 207
Global Instance cmra_update_proper :
  Proper (() ==> () ==> iff) (@cmra_update A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
  intros x1 x2 Hx y1 y2 Hy; split=>? n z; [rewrite -Hx -Hy|rewrite Hx Hy]; auto.
209 210 211 212
Qed.
Global Instance cmra_updateP_proper :
  Proper (() ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
  intros x1 x2 Hx P1 P2 HP; split=>Hup n z;
214 215
    [rewrite -Hx; setoid_rewrite <-HP|rewrite Hx; setoid_rewrite HP]; auto.
Qed.
216 217

(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
219 220 221
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
222
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
223
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
224 225 226
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
227 228 229 230 231 232 233 234 235
(** ** Core *)
Lemma cmra_core_r x : x  core x  x.
Proof. by rewrite (comm _ x) cmra_core_l. Qed.
Lemma cmra_core_core x : core x  core x  core x.
Proof. by rewrite -{2}(cmra_core_idemp x) cmra_core_r. Qed.
Lemma cmra_core_validN n x : {n} x  {n} core x.
Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
Lemma cmra_core_valid x :  x   core x.
Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.
236 237
Global Instance cmra_core_persistent x : Persistent (core x).
Proof. apply cmra_core_idemp. Qed.
238 239

(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
240 241
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
242 243 244
Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
245
  - by intros x; exists (core x); rewrite cmra_core_r.
246
  - intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2).
247
    by rewrite assoc -Hy -Hz.
248 249 250
Qed.
Global Instance cmra_included_preorder: PreOrder (@included A _ _).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
251 252 253 254
  split.
  - by intros x; exists (core x); rewrite cmra_core_r.
  - intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2).
    by rewrite assoc -Hy -Hz.
255
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
257
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
258
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
260

Robbert Krebbers's avatar
Robbert Krebbers committed
261
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
262
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
263
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
264 265 266 267 268 269 270
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
271
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
272
Lemma cmra_included_r x y : y  x  y.
273
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
274

Ralf Jung's avatar
Ralf Jung committed
275
Lemma cmra_core_preservingN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277
Proof.
  intros [z ->].
Ralf Jung's avatar
Ralf Jung committed
278
  apply cmra_included_includedN, cmra_core_preserving, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
279
Qed.
Ralf Jung's avatar
Ralf Jung committed
280 281
Lemma cmra_included_core x : core x  x.
Proof. by exists x; rewrite cmra_core_l. Qed.
282
Lemma cmra_preservingN_l n x y z : x {n} y  z  x {n} z  y.
283
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
284
Lemma cmra_preserving_l x y z : x  y  z  x  z  y.
285
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
286
Lemma cmra_preservingN_r n x y z : x {n} y  x  z {n} y  z.
287
Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
288
Lemma cmra_preserving_r x y z : x  y  x  z  y  z.
289
Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
290

Robbert Krebbers's avatar
Robbert Krebbers committed
291
Lemma cmra_included_dist_l n x1 x2 x1' :
292
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
293
Proof.
294 295
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
Qed.
297

Robbert Krebbers's avatar
Robbert Krebbers committed
298
(** ** Timeless *)
299
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
300 301
Proof.
  intros ?? [x' ?].
302
  destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Qed.
305
Lemma cmra_timeless_included_r n x y : Timeless y  x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed.
307
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
308
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
309 310
Proof.
  intros ??? z Hz.
311
  destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *.
312
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
313
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
314
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
315

316 317 318 319 320 321 322 323
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
  split; first by apply cmra_included_includedN.
325 326 327 328 329 330 331 332 333
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
Lemma cmra_discrete_updateP `{CMRADiscrete A} (x : A) (P : A  Prop) :
  ( z,  (x  z)   y, P y   (y  z))  x ~~>: P.
Proof. intros ? n. by setoid_rewrite <-cmra_discrete_valid_iff. Qed.
Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
  ( z,  (x  z)   (y  z))  x ~~> y.
Proof. intros ? n. by setoid_rewrite <-cmra_discrete_valid_iff. Qed.

Ralf Jung's avatar
Ralf Jung committed
334 335 336 337 338 339
(** ** RAs with a unit element *)
Section unit.
  Context `{Empty A, !CMRAUnit A}.
  Lemma cmra_unit_validN n : {n} .
  Proof. apply cmra_valid_validN, cmra_unit_valid. Qed.
  Lemma cmra_unit_leastN n x :  {n} x.
340
  Proof. by exists x; rewrite left_id. Qed.
Ralf Jung's avatar
Ralf Jung committed
341
  Lemma cmra_unit_least x :   x.
342
  Proof. by exists x; rewrite left_id. Qed.
Ralf Jung's avatar
Ralf Jung committed
343
  Global Instance cmra_unit_right_id : RightId ()  ().
344
  Proof. by intros x; rewrite (comm op) left_id. Qed.
345 346
  Global Instance cmra_unit_persistent : Persistent .
  Proof. by rewrite /Persistent -{2}(cmra_core_l ) right_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
347 348
  Lemma cmra_core_unit : core (:A)  .
  Proof. by rewrite -{2}(cmra_core_l ) right_id. Qed.
Ralf Jung's avatar
Ralf Jung committed
349
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
350

351
(** ** Local updates *)
352 353
Global Instance local_update_proper Lv (L : A  A) :
  LocalUpdate Lv L  Proper (() ==> ()) L.
354 355
Proof. intros; apply (ne_proper _). Qed.

356 357
Lemma local_update L `{!LocalUpdate Lv L} x y :
  Lv x   (x  y)  L (x  y)  L x  y.
358 359 360
Proof.
  by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L).
Qed.
361 362

Global Instance local_update_op x : LocalUpdate (λ _, True) (op x).
363
Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed.
364

Ralf Jung's avatar
Ralf Jung committed
365 366 367
Global Instance local_update_id : LocalUpdate (λ _, True) (@id A).
Proof. split; auto with typeclass_instances. Qed.

368
(** ** Updates *)
369
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Proof. split. by intros x y. intros x y y' ?? z ?; naive_solver. Qed.
371
Lemma cmra_update_updateP x y : x ~~> y  x ~~>: (y =).
Robbert Krebbers's avatar
Robbert Krebbers committed
372 373
Proof.
  split.
374
  - by intros Hx z ?; exists y; split; [done|apply (Hx z)].
Robbert Krebbers's avatar
Robbert Krebbers committed
375
  - by intros Hx n z ?; destruct (Hx n z) as (?&<-&?).
Robbert Krebbers's avatar
Robbert Krebbers committed
376
Qed.
377
Lemma cmra_updateP_id (P : A  Prop) x : P x  x ~~>: P.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
Proof. by intros ? n z ?; exists x. Qed.
379
Lemma cmra_updateP_compose (P Q : A  Prop) x :
380
  x ~~>: P  ( y, P y  y ~~>: Q)  x ~~>: Q.
381
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  intros Hx Hy n z ?. destruct (Hx n z) as (y&?&?); auto. by apply (Hy y).
383
Qed.
384 385 386 387 388
Lemma cmra_updateP_compose_l (Q : A  Prop) x y : x ~~> y  y ~~>: Q  x ~~>: Q.
Proof.
  rewrite cmra_update_updateP.
  intros; apply cmra_updateP_compose with (y =); intros; subst; auto.
Qed.
389
Lemma cmra_updateP_weaken (P Q : A  Prop) x : x ~~>: P  ( y, P y  Q y)  x ~~>: Q.
390
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
391

392
Lemma cmra_updateP_op (P1 P2 Q : A  Prop) x1 x2 :
393
  x1 ~~>: P1  x2 ~~>: P2  ( y1 y2, P1 y1  P2 y2  Q (y1  y2))  x1  x2 ~~>: Q.
394
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
395 396 397
  intros Hx1 Hx2 Hy n z ?.
  destruct (Hx1 n (x2  z)) as (y1&?&?); first by rewrite assoc.
  destruct (Hx2 n (y1  z)) as (y2&?&?);
398 399
    first by rewrite assoc (comm _ x2) -assoc.
  exists (y1  y2); split; last rewrite (comm _ y1) -assoc; auto.
400
Qed.
401
Lemma cmra_updateP_op' (P1 P2 : A  Prop) x1 x2 :
402
  x1 ~~>: P1  x2 ~~>: P2  x1  x2 ~~>: λ y,  y1 y2, y = y1  y2  P1 y1  P2 y2.
403
Proof. eauto 10 using cmra_updateP_op. Qed.
404
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1  x2 ~~> y2  x1  x2 ~~> y1  y2.
405
Proof.
406
  rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
407
Qed.
408 409
Lemma cmra_update_id x : x ~~> x.
Proof. intro. auto. Qed.
410

Ralf Jung's avatar
Ralf Jung committed
411 412 413
Section unit_updates.
  Context `{Empty A, !CMRAUnit A}.
  Lemma cmra_update_unit x : x ~~> .
Robbert Krebbers's avatar
Robbert Krebbers committed
414
  Proof. intros n z; rewrite left_id; apply cmra_validN_op_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
415 416 417
  Lemma cmra_update_unit_alt y :  ~~> y   x, x ~~> y.
  Proof. split; [intros; trans |]; auto using cmra_update_unit. Qed.
End unit_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
418 419
End cmra.

420
(** * Properties about monotone functions *)
421
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
422
Proof. repeat split; by try apply _. Qed.
423 424
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
425 426
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
  - apply _. 
428
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
  - move=> x y Hxy /=. by apply included_preserving, included_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
Qed.
431

432 433
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
434 435
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
  Lemma includedN_preserving n x y : x {n} y  f x {n} f y.
436
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
437
    intros [z ->].
438
    apply cmra_included_includedN, (included_preserving f), cmra_included_l.
439
  Qed.
440
  Lemma valid_preserving x :  x   f x.
441 442 443
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

444 445
(** Functors *)
Structure rFunctor := RFunctor {
446
  rFunctor_car : cofeT  cofeT  cmraT;
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

474 475 476 477 478 479 480 481 482 483 484 485 486
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
487
  Lemma cmra_transport_core x : T (core x) = core (T x).
488
  Proof. by destruct H. Qed.
489
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
490
  Proof. by destruct H. Qed.
491
  Lemma cmra_transport_valid x :  T x   x.
492 493 494
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
495 496
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
497 498 499 500 501 502 503 504
  Lemma cmra_transport_updateP (P : A  Prop) (Q : B  Prop) x :
    x ~~>: P  ( y, P y  Q (T y))  T x ~~>: Q.
  Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
  Lemma cmra_transport_updateP' (P : A  Prop) x :
    x ~~>: P  T x ~~>: λ y,  y', y = cmra_transport H y'  P y'.
  Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.

505 506
(** * Instances *)
(** ** Discrete CMRA *)
507
Record RAMixin A `{Equiv A, Core A, Op A, Valid A} := {
508 509
  (* setoids *)
  ra_op_ne (x : A) : Proper (() ==> ()) (op x);
510 511
  ra_core_ne : Proper (() ==> ()) core;
  ra_validN_ne : Proper (() ==> impl) valid;
512
  (* monoid *)
513 514
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Ralf Jung's avatar
Ralf Jung committed
515 516 517
  ra_core_l x : core x  x  x;
  ra_core_idemp x : core (core x)  core x;
  ra_core_preserving x y : x  y  core x  core y;
Robbert Krebbers's avatar
Robbert Krebbers committed
518
  ra_valid_op_l x y :  (x  y)   x
519 520
}.

521
Section discrete.
522 523 524
  Context `{Equiv A, Core A, Op A, Valid A, @Equivalence A ()}.
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
525

526
  Instance discrete_validN : ValidN A := λ n x,  x.
527
  Definition discrete_cmra_mixin : CMRAMixin A.
528
  Proof.
529
    destruct ra_mix; split; try done.
530
    - intros x; split; first done. by move=> /(_ 0).
531
    - intros n x y1 y2 ??; by exists (y1,y2).
532 533 534
  Qed.
End discrete.

535 536 537 538 539 540 541 542 543
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
Notation discreteLeibnizR A ra_mix :=
  (CMRAT A (@discrete_cofe_mixin _ equivL _) (discrete_cmra_mixin ra_mix)).

Global Instance discrete_cmra_discrete `{Equiv A, Core A, Op A, Valid A,
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

544 545 546
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
547
  Instance unit_validN : ValidN () := λ n x, True.
Ralf Jung's avatar
Ralf Jung committed
548
  Instance unit_core : Core () := λ x, x.
549 550
  Instance unit_op : Op () := λ x y, ().
  Global Instance unit_empty : Empty () := ().
551 552 553
  Definition unit_cmra_mixin : CMRAMixin ().
  Proof. by split; last exists ((),()). Qed.
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
Ralf Jung's avatar
Ralf Jung committed
554
  Global Instance unit_cmra_unit : CMRAUnit unitR.
555
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
556
  Proof. done. Qed.
557 558
  Global Instance unit_persistent (x : ()) : Persistent x.
  Proof. done. Qed.
559
End unit.
560

561
(** ** Product *)
562 563 564 565
Section prod.
  Context {A B : cmraT}.
  Instance prod_op : Op (A * B) := λ x y, (x.1  y.1, x.2  y.2).
  Global Instance prod_empty `{Empty A, Empty B} : Empty (A * B) := (, ).
Ralf Jung's avatar
Ralf Jung committed
566
  Instance prod_core : Core (A * B) := λ x, (core (x.1), core (x.2)).
567
  Instance prod_valid : Valid (A * B) := λ x,  x.1   x.2.
568
  Instance prod_validN : ValidN (A * B) := λ n x, {n} x.1  {n} x.2.
569 570 571 572 573 574 575 576 577 578 579 580 581
  Lemma prod_included (x y : A * B) : x  y  x.1  y.1  x.2  y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
  Lemma prod_includedN (x y : A * B) n : x {n} y  x.1 {n} y.1  x.2 {n} y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
  Definition prod_cmra_mixin : CMRAMixin (A * B).
  Proof.
    split; try apply _.
582 583 584
    - by intros n x y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2.
    - by intros n y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2.
    - by intros n y1 y2 [Hy1 Hy2] [??]; split; rewrite /= -?Hy1 -?Hy2.
585 586 587
    - intros x; split.
      + intros [??] n; split; by apply cmra_valid_validN.
      + intros Hxy; split; apply cmra_valid_validN=> n; apply Hxy.
588 589 590
    - by intros n x [??]; split; apply cmra_validN_S.
    - by split; rewrite /= assoc.
    - by split; rewrite /= comm.
Ralf Jung's avatar
Ralf Jung committed
591 592
    - by split; rewrite /= cmra_core_l.
    - by split; rewrite /= cmra_core_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
593
    - intros x y; rewrite !prod_included.
Ralf Jung's avatar
Ralf Jung committed
594
      by intros [??]; split; apply cmra_core_preserving.
595
    - intros n x y [??]; split; simpl in *; eauto using cmra_validN_op_l.
596 597 598 599
    - intros n x y1 y2 [??] [??]; simpl in *.
      destruct (cmra_extend n (x.1) (y1.1) (y2.1)) as (z1&?&?&?); auto.
      destruct (cmra_extend n (x.2) (y1.2) (y2.2)) as (z2&?&?&?); auto.
      by exists ((z1.1,z2.1),(z1.2,z2.2)).
600
  Qed.
601 602
  Canonical Structure prodR : cmraT :=
    CMRAT (A * B) prod_cofe_mixin prod_cmra_mixin.
Ralf Jung's avatar
Ralf Jung committed
603 604
  Global Instance prod_cmra_unit `{Empty A, Empty B} :
    CMRAUnit A  CMRAUnit B  CMRAUnit prodR.
605 606
  Proof.
    split.
Ralf Jung's avatar
Ralf Jung committed
607
    - split; apply cmra_unit_valid.
608 609
    - by split; rewrite /=left_id.
    - by intros ? [??]; split; apply (timeless _).
610
  Qed.
611
  Global Instance prod_cmra_discrete :
612
    CMRADiscrete A  CMRADiscrete B  CMRADiscrete prodR.
613 614
  Proof. split. apply _. by intros ? []; split; apply cmra_discrete_valid. Qed.

615 616 617 618
  Global Instance pair_persistent x y :
    Persistent x  Persistent y  Persistent (x,y).
  Proof. by split. Qed.

619 620 621 622
  Lemma pair_split `{CMRAUnit A, CMRAUnit B} (x : A) (y : B) :
    (x, y)  (x, )  (, y).
  Proof. constructor; by rewrite /= ?left_id ?right_id. Qed.

623
  Lemma prod_update x y : x.1 ~~> y.1  x.2 ~~> y.2  x ~~> y.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
  Proof. intros ?? n z [??]; split; simpl in *; auto. Qed.
625
  Lemma prod_updateP P1 P2 (Q : A * B  Prop)  x :
626
    x.1 ~~>: P1  x.2 ~~>: P2  ( a b, P1 a  P2 b  Q (a,b))  x ~~>: Q.
627
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
628 629
    intros Hx1 Hx2 HP n z [??]; simpl in *.
    destruct (Hx1 n (z.1)) as (a&?&?), (Hx2 n (z.2)) as (b&?&?); auto.
630 631
    exists (a,b); repeat split; auto.
  Qed.
632
  Lemma prod_updateP' P1 P2 x :
633
    x.1 ~~>: P1  x.2 ~~>: P2  x ~~>: λ y, P1 (y.1)  P2 (y.2).
634
  Proof. eauto using prod_updateP. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
635 636 637 638 639 640 641 642 643 644

  Global Instance prod_local_update
      (LA : A  A) `{!LocalUpdate LvA LA} (LB : B  B) `{!LocalUpdate LvB LB} :
    LocalUpdate (λ x, LvA (x.1)  LvB (x.2)) (prod_map LA LB).
  Proof.
    constructor.
    - intros n x y [??]; constructor; simpl; by apply local_update_ne.
    - intros n ?? [??] [??];
        constructor; simpl in *; eapply local_updateN; eauto.
  Qed.
645
End prod.
Robbert Krebbers's avatar
Robbert Krebbers committed
646

647
Arguments prodR : clear implicits.
648 649 650

Instance prod_map_cmra_monotone {A A' B B' : cmraT} (f : A  A') (g : B  B') :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (prod_map f g).
651
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
652
  split; first apply _.
653
  - by intros n x [??]; split; simpl; apply validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
654 655
  - intros x y; rewrite !prod_included=> -[??] /=.
    by split; apply included_preserving.
656
Qed.
657 658 659 660 661
Program Definition prodRF (F1 F2 : rFunctor) : rFunctor := {|
  rFunctor_car A B := prodR (rFunctor_car F1 A B) (rFunctor_car F2 A B);
  rFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (rFunctor_map F1 fg) (rFunctor_map F2 fg)
|}.
662 663 664
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply rFunctor_ne.
Qed.
665 666 667 668 669
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !rFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !rFunctor_compose.
Qed.
670 671 672 673 674 675 676 677

Instance prodRF_contractive F1 F2 :
  rFunctorContractive F1  rFunctorContractive F2 
  rFunctorContractive (prodRF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply rFunctor_contractive.
Qed.
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

(** ** CMRA for the option type *)
Section option.
  Context {A : cmraT}.

  Instance option_valid : Valid (option A) := λ mx,
    match mx with Some x =>  x | None => True end.
  Instance option_validN : ValidN (option A) := λ n mx,
    match