cmra.v 32.7 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Ralf Jung's avatar
Ralf Jung committed
3
4
Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.
5
6
7
8
9
10
11
12
13

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
14
Hint Extern 0 (_  _) => reflexivity.
15
16
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
17
18
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
19
Notation "✓{ n } x" := (validN n x)
20
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22
23
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
24
Notation "✓ x" := (valid x) (at level 20) : C_scope.
25

26
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Notation "x ≼{ n } y" := (includedN n x y)
28
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
Instance: Params (@includedN) 4.
30
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
Record CMRAMixin A `{Dist A, Equiv A, Core A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  (* setoids *)
34
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Ralf Jung's avatar
Ralf Jung committed
35
  mixin_cmra_core_ne n : Proper (dist n ==> dist n) core;
36
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
37
  (* valid *)
38
  mixin_cmra_valid_validN x :  x   n, {n} x;
39
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  (* monoid *)
41
42
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Ralf Jung's avatar
Ralf Jung committed
43
44
45
  mixin_cmra_core_l x : core x  x  x;
  mixin_cmra_core_idemp x : core (core x)  core x;
  mixin_cmra_core_preserving x y : x  y  core x  core y;
46
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
47
48
49
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }
Robbert Krebbers's avatar
Robbert Krebbers committed
50
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
51

Robbert Krebbers's avatar
Robbert Krebbers committed
52
53
54
55
56
57
(** Bundeled version *)
Structure cmraT := CMRAT {
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Ralf Jung's avatar
Ralf Jung committed
58
  cmra_core : Core cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
59
  cmra_op : Op cmra_car;
60
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  cmra_validN : ValidN cmra_car;
62
  cmra_cofe_mixin : CofeMixin cmra_car;
63
  cmra_mixin : CMRAMixin cmra_car
Robbert Krebbers's avatar
Robbert Krebbers committed
64
}.
65
Arguments CMRAT _ {_ _ _ _ _ _ _} _ _.
66
67
68
69
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Ralf Jung's avatar
Ralf Jung committed
70
Arguments cmra_core : simpl never.
71
Arguments cmra_op : simpl never.
72
Arguments cmra_valid : simpl never.
73
74
75
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
Add Printing Constructor cmraT.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Existing Instances cmra_core cmra_op cmra_valid cmra_validN.
78
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
79
80
Canonical Structure cmra_cofeC.

81
82
83
84
85
86
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Ralf Jung's avatar
Ralf Jung committed
87
88
  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof. apply (mixin_cmra_core_ne _ (cmra_mixin A)). Qed.
89
90
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
91
92
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
93
94
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
95
96
97
98
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Ralf Jung's avatar
Ralf Jung committed
99
100
101
102
103
104
  Lemma cmra_core_l x : core x  x  x.
  Proof. apply (mixin_cmra_core_l _ (cmra_mixin A)). Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof. apply (mixin_cmra_core_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_core_preserving x y : x  y  core x  core y.
  Proof. apply (mixin_cmra_core_preserving _ (cmra_mixin A)). Qed.
105
106
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
107
  Lemma cmra_extend n x y1 y2 :
108
109
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }.
110
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
111
112
End cmra_mixin.

Ralf Jung's avatar
Ralf Jung committed
113
(** * CMRAs with a unit element *)
114
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
115
116
117
118
119
`empty' element is the unit. *)
Class CMRAUnit (A : cmraT) `{Empty A} := {
  cmra_unit_valid :  ;
  cmra_unit_left_id :> LeftId ()  ();
  cmra_unit_timeless :> Timeless 
120
}.
Ralf Jung's avatar
Ralf Jung committed
121
Instance cmra_unit_inhabited `{CMRAUnit A} : Inhabited A := populate .
122

123
124
125
126
(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : core x  x.
Arguments persistent {_} _ {_}.

127
(** * Discrete CMRAs *)
128
Class CMRADiscrete (A : cmraT) := {
129
130
131
132
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
133
(** * Morphisms *)
134
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
135
136
137
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
  included_preserving x y : x  y  f x  f y
138
}.
139
140
Arguments validN_preserving {_ _} _ {_} _ _ _.
Arguments included_preserving {_ _} _ {_} _ _ _.
141

142
(** * Local updates *)
Ralf Jung's avatar
Ralf Jung committed
143
144
(** The idea is that lemams taking this class will usually have L explicit,
    and leave Lv implicit - it will be inferred by the typeclass machinery. *)
145
146
147
Class LocalUpdate {A : cmraT} (Lv : A  Prop) (L : A  A) := {
  local_update_ne n :> Proper (dist n ==> dist n) L;
  local_updateN n x y : Lv x  {n} (x  y)  L (x  y) {n} L x  y
148
149
150
}.
Arguments local_updateN {_ _} _ {_} _ _ _ _ _.

151
(** * Frame preserving updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Definition cmra_updateP {A : cmraT} (x : A) (P : A  Prop) :=  n z,
153
  {n} (x  z)   y, P y  {n} (y  z).
154
Instance: Params (@cmra_updateP) 1.
155
Infix "~~>:" := cmra_updateP (at level 70).
Robbert Krebbers's avatar
Robbert Krebbers committed
156
Definition cmra_update {A : cmraT} (x y : A) :=  n z,
157
  {n} (x  z)  {n} (y  z).
158
Infix "~~>" := cmra_update (at level 70).
159
Instance: Params (@cmra_update) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
160

Robbert Krebbers's avatar
Robbert Krebbers committed
161
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
162
Section cmra.
163
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Implicit Types x y z : A.
165
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
166

167
(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
168
Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
169
170
171
172
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof.
  intros x1 x2 Hx y1 y2 Hy.
173
  by rewrite Hy (comm _ x1) Hx (comm _ y2).
174
175
176
177
178
179
180
181
182
Qed.
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
183
184
185
186
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
205
206
207
Global Instance cmra_update_proper :
  Proper (() ==> () ==> iff) (@cmra_update A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
  intros x1 x2 Hx y1 y2 Hy; split=>? n z; [rewrite -Hx -Hy|rewrite Hx Hy]; auto.
209
210
211
212
Qed.
Global Instance cmra_updateP_proper :
  Proper (() ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
  intros x1 x2 Hx P1 P2 HP; split=>Hup n z;
214
215
    [rewrite -Hx; setoid_rewrite <-HP|rewrite Hx; setoid_rewrite HP]; auto.
Qed.
216
217

(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
219
220
221
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
222
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
223
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
224
225
226
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
227
228
229
230
231
232
233
234
235
(** ** Core *)
Lemma cmra_core_r x : x  core x  x.
Proof. by rewrite (comm _ x) cmra_core_l. Qed.
Lemma cmra_core_core x : core x  core x  core x.
Proof. by rewrite -{2}(cmra_core_idemp x) cmra_core_r. Qed.
Lemma cmra_core_validN n x : {n} x  {n} core x.
Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
Lemma cmra_core_valid x :  x   core x.
Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.
236
237
Global Instance cmra_core_persistent x : Persistent (core x).
Proof. apply cmra_core_idemp. Qed.
238
239

(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
240
241
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
242
243
244
Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
245
  - by intros x; exists (core x); rewrite cmra_core_r.
246
  - intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2).
247
    by rewrite assoc -Hy -Hz.
248
249
250
Qed.
Global Instance cmra_included_preorder: PreOrder (@included A _ _).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
251
252
253
254
  split.
  - by intros x; exists (core x); rewrite cmra_core_r.
  - intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2).
    by rewrite assoc -Hy -Hz.
255
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
256
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
257
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
258
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
260

Robbert Krebbers's avatar
Robbert Krebbers committed
261
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
262
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
263
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
264
265
266
267
268
269
270
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
271
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
272
Lemma cmra_included_r x y : y  x  y.
273
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
274

Ralf Jung's avatar
Ralf Jung committed
275
Lemma cmra_core_preservingN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
276
277
Proof.
  intros [z ->].
Ralf Jung's avatar
Ralf Jung committed
278
  apply cmra_included_includedN, cmra_core_preserving, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
279
Qed.
Ralf Jung's avatar
Ralf Jung committed
280
281
Lemma cmra_included_core x : core x  x.
Proof. by exists x; rewrite cmra_core_l. Qed.
282
Lemma cmra_preservingN_l n x y z : x {n} y  z  x {n} z  y.
283
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
284
Lemma cmra_preserving_l x y z : x  y  z  x  z  y.
285
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
286
Lemma cmra_preservingN_r n x y z : x {n} y  x  z {n} y  z.
287
Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
288
Lemma cmra_preserving_r x y z : x  y  x  z  y  z.
289
Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
290

Robbert Krebbers's avatar
Robbert Krebbers committed
291
Lemma cmra_included_dist_l n x1 x2 x1' :
292
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
293
Proof.
294
295
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
296
Qed.
297

Robbert Krebbers's avatar
Robbert Krebbers committed
298
(** ** Timeless *)
299
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
301
Proof.
  intros ?? [x' ?].
302
  destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
304
Qed.
305
Lemma cmra_timeless_included_r n x y : Timeless y  x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
306
Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed.
307
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
308
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
309
310
Proof.
  intros ??? z Hz.
311
  destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *.
312
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
313
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
314
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
315

316
317
318
319
320
321
322
323
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
324
  split; first by apply cmra_included_includedN.
325
326
327
328
329
330
331
332
333
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
Lemma cmra_discrete_updateP `{CMRADiscrete A} (x : A) (P : A  Prop) :
  ( z,  (x  z)   y, P y   (y  z))  x ~~>: P.
Proof. intros ? n. by setoid_rewrite <-cmra_discrete_valid_iff. Qed.
Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
  ( z,  (x  z)   (y  z))  x ~~> y.
Proof. intros ? n. by setoid_rewrite <-cmra_discrete_valid_iff. Qed.

Ralf Jung's avatar
Ralf Jung committed
334
335
336
337
338
339
(** ** RAs with a unit element *)
Section unit.
  Context `{Empty A, !CMRAUnit A}.
  Lemma cmra_unit_validN n : {n} .
  Proof. apply cmra_valid_validN, cmra_unit_valid. Qed.
  Lemma cmra_unit_leastN n x :  {n} x.
340
  Proof. by exists x; rewrite left_id. Qed.
Ralf Jung's avatar
Ralf Jung committed
341
  Lemma cmra_unit_least x :   x.
342
  Proof. by exists x; rewrite left_id. Qed.
Ralf Jung's avatar
Ralf Jung committed
343
  Global Instance cmra_unit_right_id : RightId ()  ().
344
  Proof. by intros x; rewrite (comm op) left_id. Qed.
345
346
  Global Instance cmra_unit_persistent : Persistent .
  Proof. by rewrite /Persistent -{2}(cmra_core_l ) right_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
348
  Lemma cmra_core_unit : core (:A)  .
  Proof. by rewrite -{2}(cmra_core_l ) right_id. Qed.
Ralf Jung's avatar
Ralf Jung committed
349
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
350

351
(** ** Local updates *)
352
353
Global Instance local_update_proper Lv (L : A  A) :
  LocalUpdate Lv L  Proper (() ==> ()) L.
354
355
Proof. intros; apply (ne_proper _). Qed.

356
357
Lemma local_update L `{!LocalUpdate Lv L} x y :
  Lv x   (x  y)  L (x  y)  L x  y.
358
359
360
Proof.
  by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L).
Qed.
361
362

Global Instance local_update_op x : LocalUpdate (λ _, True) (op x).
363
Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed.
364

Ralf Jung's avatar
Ralf Jung committed
365
366
367
Global Instance local_update_id : LocalUpdate (λ _, True) (@id A).
Proof. split; auto with typeclass_instances. Qed.

368
(** ** Updates *)
369
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Proof. split. by intros x y. intros x y y' ?? z ?; naive_solver. Qed.
371
Lemma cmra_update_updateP x y : x ~~> y  x ~~>: (y =).
Robbert Krebbers's avatar
Robbert Krebbers committed
372
373
Proof.
  split.
374
  - by intros Hx z ?; exists y; split; [done|apply (Hx z)].
Robbert Krebbers's avatar
Robbert Krebbers committed
375
  - by intros Hx n z ?; destruct (Hx n z) as (?&<-&?).
Robbert Krebbers's avatar
Robbert Krebbers committed
376
Qed.
377
Lemma cmra_updateP_id (P : A  Prop) x : P x  x ~~>: P.
Robbert Krebbers's avatar
Robbert Krebbers committed
378
Proof. by intros ? n z ?; exists x. Qed.
379
Lemma cmra_updateP_compose (P Q : A  Prop) x :
380
  x ~~>: P  ( y, P y  y ~~>: Q)  x ~~>: Q.
381
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
382
  intros Hx Hy n z ?. destruct (Hx n z) as (y&?&?); auto. by apply (Hy y).
383
Qed.
384
385
386
387
388
Lemma cmra_updateP_compose_l (Q : A  Prop) x y : x ~~> y  y ~~>: Q  x ~~>: Q.
Proof.
  rewrite cmra_update_updateP.
  intros; apply cmra_updateP_compose with (y =); intros; subst; auto.
Qed.
389
Lemma cmra_updateP_weaken (P Q : A  Prop) x : x ~~>: P  ( y, P y  Q y)  x ~~>: Q.
390
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
391

392
Lemma cmra_updateP_op (P1 P2 Q : A  Prop) x1 x2 :
393
  x1 ~~>: P1  x2 ~~>: P2  ( y1 y2, P1 y1  P2 y2  Q (y1  y2))  x1  x2 ~~>: Q.
394
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
395
396
397
  intros Hx1 Hx2 Hy n z ?.
  destruct (Hx1 n (x2  z)) as (y1&?&?); first by rewrite assoc.
  destruct (Hx2 n (y1  z)) as (y2&?&?);
398
399
    first by rewrite assoc (comm _ x2) -assoc.
  exists (y1  y2); split; last rewrite (comm _ y1) -assoc; auto.
400
Qed.
401
Lemma cmra_updateP_op' (P1 P2 : A  Prop) x1 x2 :
402
  x1 ~~>: P1  x2 ~~>: P2  x1  x2 ~~>: λ y,  y1 y2, y = y1  y2  P1 y1  P2 y2.
403
Proof. eauto 10 using cmra_updateP_op. Qed.
404
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1  x2 ~~> y2  x1  x2 ~~> y1  y2.
405
Proof.
406
  rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
407
Qed.
408
409
Lemma cmra_update_id x : x ~~> x.
Proof. intro. auto. Qed.
410

Ralf Jung's avatar
Ralf Jung committed
411
412
413
Section unit_updates.
  Context `{Empty A, !CMRAUnit A}.
  Lemma cmra_update_unit x : x ~~> .
Robbert Krebbers's avatar
Robbert Krebbers committed
414
  Proof. intros n z; rewrite left_id; apply cmra_validN_op_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
415
416
417
  Lemma cmra_update_unit_alt y :  ~~> y   x, x ~~> y.
  Proof. split; [intros; trans |]; auto using cmra_update_unit. Qed.
End unit_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
418
419
End cmra.

420
(** * Properties about monotone functions *)
421
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
422
Proof. repeat split; by try apply _. Qed.
423
424
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
425
426
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
  - apply _. 
428
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
  - move=> x y Hxy /=. by apply included_preserving, included_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
Qed.
431

432
433
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
434
435
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
  Lemma includedN_preserving n x y : x {n} y  f x {n} f y.
436
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
437
    intros [z ->].
438
    apply cmra_included_includedN, (included_preserving f), cmra_included_l.
439
  Qed.
440
  Lemma valid_preserving x :  x   f x.
441
442
443
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
(** Functors *)
Structure rFunctor := RFunctor {
  rFunctor_car : cofeT  cofeT -> cmraT;
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

474
475
476
477
478
479
480
481
482
483
484
485
486
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
487
  Lemma cmra_transport_core x : T (core x) = core (T x).
488
  Proof. by destruct H. Qed.
489
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
490
  Proof. by destruct H. Qed.
491
  Lemma cmra_transport_valid x :  T x   x.
492
493
494
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
495
496
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
497
498
499
500
501
502
503
504
  Lemma cmra_transport_updateP (P : A  Prop) (Q : B  Prop) x :
    x ~~>: P  ( y, P y  Q (T y))  T x ~~>: Q.
  Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
  Lemma cmra_transport_updateP' (P : A  Prop) x :
    x ~~>: P  T x ~~>: λ y,  y', y = cmra_transport H y'  P y'.
  Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.

505
506
(** * Instances *)
(** ** Discrete CMRA *)
507
Record RAMixin A `{Equiv A, Core A, Op A, Valid A} := {
508
509
  (* setoids *)
  ra_op_ne (x : A) : Proper (() ==> ()) (op x);
510
511
  ra_core_ne : Proper (() ==> ()) core;
  ra_validN_ne : Proper (() ==> impl) valid;
512
  (* monoid *)
513
514
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Ralf Jung's avatar
Ralf Jung committed
515
516
517
  ra_core_l x : core x  x  x;
  ra_core_idemp x : core (core x)  core x;
  ra_core_preserving x y : x  y  core x  core y;
Robbert Krebbers's avatar
Robbert Krebbers committed
518
  ra_valid_op_l x y :  (x  y)   x
519
520
}.

521
Section discrete.
522
523
524
  Context `{Equiv A, Core A, Op A, Valid A, @Equivalence A ()}.
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
525

526
  Instance discrete_validN : ValidN A := λ n x,  x.
527
  Definition discrete_cmra_mixin : CMRAMixin A.
528
  Proof.
529
    destruct ra_mix; split; try done.
530
    - intros x; split; first done. by move=> /(_ 0).
531
    - intros n x y1 y2 ??; by exists (y1,y2).
532
533
534
  Qed.
End discrete.

535
536
537
538
539
540
541
542
543
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
Notation discreteLeibnizR A ra_mix :=
  (CMRAT A (@discrete_cofe_mixin _ equivL _) (discrete_cmra_mixin ra_mix)).

Global Instance discrete_cmra_discrete `{Equiv A, Core A, Op A, Valid A,
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

544
545
546
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
547
  Instance unit_validN : ValidN () := λ n x, True.
Ralf Jung's avatar
Ralf Jung committed
548
  Instance unit_core : Core () := λ x, x.
549
550
  Instance unit_op : Op () := λ x y, ().
  Global Instance unit_empty : Empty () := ().
551
552
553
  Definition unit_cmra_mixin : CMRAMixin ().
  Proof. by split; last exists ((),()). Qed.
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
Ralf Jung's avatar
Ralf Jung committed
554
  Global Instance unit_cmra_unit : CMRAUnit unitR.
555
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
556
  Proof. done. Qed.
557
558
  Global Instance unit_persistent (x : ()) : Persistent x.
  Proof. done. Qed.
559
End unit.
560

561
(** ** Product *)
562
563
564
565
Section prod.
  Context {A B : cmraT}.
  Instance prod_op : Op (A * B) := λ x y, (x.1  y.1, x.2  y.2).
  Global Instance prod_empty `{Empty A, Empty B} : Empty (A * B) := (, ).
Ralf Jung's avatar
Ralf Jung committed
566
  Instance prod_core : Core (A * B) := λ x, (core (x.1), core (x.2)).
567
  Instance prod_valid : Valid (A * B) := λ x,  x.1   x.2.
568
  Instance prod_validN : ValidN (A * B) := λ n x, {n} x.1  {n} x.2.
569
570
571
572
573
574
575
576
577
578
579
580
581
  Lemma prod_included (x y : A * B) : x  y  x.1  y.1  x.2  y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
  Lemma prod_includedN (x y : A * B) n : x {n} y  x.1 {n} y.1  x.2 {n} y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
  Definition prod_cmra_mixin : CMRAMixin (A * B).
  Proof.
    split; try apply _.
582
583
584
    - by intros n x y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2.
    - by intros n y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2.
    - by intros n y1 y2 [Hy1 Hy2] [??]; split; rewrite /= -?Hy1 -?Hy2.
585
586
587
    - intros x; split.
      + intros [??] n; split; by apply cmra_valid_validN.
      + intros Hxy; split; apply cmra_valid_validN=> n; apply Hxy.
588
589
590
    - by intros n x [??]; split; apply cmra_validN_S.
    - by split; rewrite /= assoc.
    - by split; rewrite /= comm.
Ralf Jung's avatar
Ralf Jung committed
591
592
    - by split; rewrite /= cmra_core_l.
    - by split; rewrite /= cmra_core_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
593
    - intros x y; rewrite !prod_included.
Ralf Jung's avatar
Ralf Jung committed
594
      by intros [??]; split; apply cmra_core_preserving.
595
    - intros n x y [??]; split; simpl in *; eauto using cmra_validN_op_l.
596
597
598
599
    - intros n x y1 y2 [??] [??]; simpl in *.
      destruct (cmra_extend n (x.1) (y1.1) (y2.1)) as (z1&?&?&?); auto.
      destruct (cmra_extend n (x.2) (y1.2) (y2.2)) as (z2&?&?&?); auto.
      by exists ((z1.1,z2.1),(z1.2,z2.2)).
600
  Qed.
601
602
  Canonical Structure prodR : cmraT :=
    CMRAT (A * B) prod_cofe_mixin prod_cmra_mixin.
Ralf Jung's avatar
Ralf Jung committed
603
604
  Global Instance prod_cmra_unit `{Empty A, Empty B} :
    CMRAUnit A  CMRAUnit B  CMRAUnit prodR.
605
606
  Proof.
    split.
Ralf Jung's avatar
Ralf Jung committed
607
    - split; apply cmra_unit_valid.
608
609
    - by split; rewrite /=left_id.
    - by intros ? [??]; split; apply (timeless _).
610
  Qed.
611
  Global Instance prod_cmra_discrete :
612
    CMRADiscrete A  CMRADiscrete B  CMRADiscrete prodR.
613
614
  Proof. split. apply _. by intros ? []; split; apply cmra_discrete_valid. Qed.

615
616
617
618
  Global Instance pair_persistent x y :
    Persistent x  Persistent y  Persistent (x,y).
  Proof. by split. Qed.

619
620
621
622
  Lemma pair_split `{CMRAUnit A, CMRAUnit B} (x : A) (y : B) :
    (x, y)  (x, )  (, y).
  Proof. constructor; by rewrite /= ?left_id ?right_id. Qed.

623
  Lemma prod_update x y : x.1 ~~> y.1  x.2 ~~> y.2  x ~~> y.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
  Proof. intros ?? n z [??]; split; simpl in *; auto. Qed.
625
  Lemma prod_updateP P1 P2 (Q : A * B  Prop)  x :
626
    x.1 ~~>: P1  x.2 ~~>: P2  ( a b, P1 a  P2 b  Q (a,b))  x ~~>: Q.
627
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
    intros Hx1 Hx2 HP n z [??]; simpl in *.
    destruct (Hx1 n (z.1)) as (a&?&?), (Hx2 n (z.2)) as (b&?&?); auto.
630
631
    exists (a,b); repeat split; auto.
  Qed.
632
  Lemma prod_updateP' P1 P2 x :
633
    x.1 ~~>: P1  x.2 ~~>: P2  x ~~>: λ y, P1 (y.1)  P2 (y.2).
634
  Proof. eauto using prod_updateP. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
635
636
637
638
639
640
641
642
643
644

  Global Instance prod_local_update
      (LA : A  A) `{!LocalUpdate LvA LA} (LB : B  B) `{!LocalUpdate LvB LB} :
    LocalUpdate (λ x, LvA (x.1)  LvB (x.2)) (prod_map LA LB).
  Proof.
    constructor.
    - intros n x y [??]; constructor; simpl; by apply local_update_ne.
    - intros n ?? [??] [??];
        constructor; simpl in *; eapply local_updateN; eauto.
  Qed.
645
End prod.
Robbert Krebbers's avatar
Robbert Krebbers committed
646

647
Arguments prodR : clear implicits.
648
649
650

Instance prod_map_cmra_monotone {A A' B B' : cmraT} (f : A  A') (g : B  B') :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (prod_map f g).
651
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
652
  split; first apply _.
653
  - by intros n x [??]; split; simpl; apply validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
654
655
  - intros x y; rewrite !prod_included=> -[??] /=.
    by split; apply included_preserving.
656
Qed.
657
658
659
660
661
Program Definition prodRF (F1 F2 : rFunctor) : rFunctor := {|
  rFunctor_car A B := prodR (rFunctor_car F1 A B) (rFunctor_car F2 A B);
  rFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (rFunctor_map F1 fg) (rFunctor_map F2 fg)
|}.
662
663
664
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply rFunctor_ne.
Qed.
665
666
667
668
669
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !rFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !rFunctor_compose.
Qed.
670
671
672
673
674
675
676
677

Instance prodRF_contractive F1 F2 :
  rFunctorContractive F1  rFunctorContractive F2 
  rFunctorContractive (prodRF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply rFunctor_contractive.
Qed.
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

(** ** CMRA for the option type *)
Section option.
  Context {A : cmraT}.

  Instance option_valid : Valid (option A) := λ mx,
    match mx with Some x =>  x | None => True end.
  Instance option_validN : ValidN (option A) := λ n mx,
    match mx with Some x => {n} x | None => True end.
  Global Instance option_empty : Empty (option A) := None.
  Instance option_core : Core (option A) := fmap core.
  Instance option_op : Op (option A) := union_with (λ x y, Some (x  y)).

  Definition Some_valid a :  Some a   a := reflexivity _.
  Definition Some_op a b : Some (a  b) = Some a  Some b := eq_refl.

  Lemma option_included (mx my : option A) :
    mx  my  mx = None   x y, mx = Some x  my = Some y  x  y.
  Proof.
    split.
    - intros [mz Hmz].
      destruct mx as [x|]; [right|by left].
      destruct my as [y|]; [exists x, y|destruct mz; inversion_clear Hmz].
      destruct mz as [z|]; inversion_clear Hmz; split_and?; auto;
        setoid_subst; eauto using cmra_included_l.
    - intros [->|(x&y&->&->&z&Hz)]; try (by exists my; destruct my; constructor).
      by exists (Some z); constructor.
  Qed.

  Definition option_cmra_mixin  : CMRAMixin (option A).
  Proof.
    split.
    - by intros n [x|]; destruct 1; constructor; cofe_subst.
    - by destruct 1; constructor; cofe_subst.
    - by destruct 1; rewrite /validN /option_validN //=; cofe_subst.
    - intros [x|]; [apply cmra_valid_validN|done].
    - intros n [x|]; unfold validN, option_validN; eauto using cmra_validN_S.
    - intros [x|] [y|] [z|]; constructor; rewrite ?assoc; auto.
    - intros [x|] [y|]; constructor; rewrite 1?comm; auto.
    - by intros [x|]; constructor; rewrite cmra_core_l.
    - by intros [x|]; constructor; rewrite cmra_core_idemp.
    - intros mx my; rewrite !option_included ;intros [->|(x&y&->&->&?)]; auto.
      right; exists (core x), (core y); eauto using cmra_core_preserving.
    - intros n [x|] [y|]; rewrite /validN /option_validN /=;
        eauto using cmra_validN_op_l.
    - intros n mx my1 my2.
      destruct mx as [x|], my1 as [y1|], my2 as [y2|]; intros Hx Hx';
        try (by exfalso; inversion Hx'; auto).
      + destruct (cmra_extend n x y1 y2) as ([z1 z2]&?&?&?); auto.
        { by inversion_clear Hx'. }
        by exists (Some z1, Some z2); repeat constructor.
      + by exists (Some x,None); inversion Hx'; repeat constructor.
      + by exists (None,Some x); inversion Hx'; repeat constructor.
      + exists (None,None); repeat constructor.
  Qed.
  Canonical Structure optionR :=
    CMRAT (option A) option_cofe_mixin option_cmra_mixin.
  Global Instance option_cmra_unit : CMRAUnit optionR.
  Proof. split. done. by intros []. by inversion_clear 1. Qed.
  Global Instance option_cmra_discrete : CMRADiscrete A  CMRADiscrete optionR.
  Proof. split; [apply _|]. by intros [x|]; [apply (cmra_discrete_valid x)|]. Qed.

  (** Misc *)
  Global Instance Some_cmra_monotone : CMRAMonotone Some.
  Proof. split; [apply _|done|intros x y [z ->]; by exists (Some z)]. Qed.
  Lemma op_is_Some mx my : is_Some (mx  my)  is_Some mx  is_Some my.
  Proof.
    destruct mx, my; rewrite /op /option_op /= -!not_eq_None_Some; naive_solver.
  Qed.
  Lemma option_op_positive_dist_l n mx my : mx  my {n} None  mx {n} None.
  Proof. by destruct mx, my; inversion_clear 1. Qed.
  Lemma option_op_positive_dist_r n mx my : mx  my {n} None  my {n} None.
  Proof. by destruct mx, my; inversion_clear 1. Qed.

  Global Instance Some_persistent (x : A) : Persistent x  Persistent (Some x).
  Proof. by constructor. Qed.
  Global Instance option_persistent (mx : option A) :
    ( x : A, Persistent x)  Persistent mx.
  Proof. intros. destruct mx. apply _. apply cmra_unit_persistent. Qed.

  (** Updates *)
  Lemma option_updateP (P : A  Prop) (Q : option A  Prop) x :
    x ~~>: P  ( y, P y  Q (Some y))  Some x ~~>: Q.
  Proof.
    intros Hx Hy n [y|] ?.
    { destruct (Hx n y) as (y'&?&?); auto. exists (Some y'); auto. }
    destruct (Hx n (core x)) as (y'&?&?); rewrite ?cmra_core_r; auto.
    by exists (Some y'); split; [auto|apply cmra_validN_op_l with (core x)].
  Qed.
  Lemma option_updateP' (P : A  Prop) x :
    x ~~>: P  Some x ~~>: λ my, default False my P.