sts.v 18.3 KB
Newer Older
1 2 3
From iris.prelude Require Export sets.
From iris.algebra Require Export cmra.
From iris.algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Ralf Jung's avatar
Ralf Jung committed
6
Local Arguments core _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11 12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26 27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
29
     (* TODO: This asks for ⊥ on sets: T1 ⊥ T2 := T1 ∩ T2 ⊆ ∅. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
30
     prim_step s1 s2  tok s1  T1    tok s2  T2   
Ralf Jung's avatar
Ralf Jung committed
31
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
34
  | Frame_step T1 T2 :
35
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
36 37 38

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
39
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
42
Definition up (s : state sts) (T : tokens sts) : states sts :=
43
  {[ s' | rtc (frame_step T) s s' ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
45
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
46

Robbert Krebbers's avatar
Robbert Krebbers committed
47 48
(** Tactic setup *)
Hint Resolve Step.
49 50 51 52
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
53 54

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
55 56 57
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
58
    eauto with sts; set_solver.
Ralf Jung's avatar
Ralf Jung committed
59
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
60
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
Ralf Jung's avatar
Ralf Jung committed
61
Proof. by intros ?? [??] ??????; split; apply framestep_mono. Qed.
62
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Proof.
64
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
68
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Proof.
71
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
73
  eapply elem_of_mkSet, rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
76
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
77
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
78 79
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
80
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Ralf Jung's avatar
Ralf Jung committed
81
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
82
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
84 85 86 87 88 89

(** ** Properties of closure under frame steps *)
Lemma closed_steps S T s1 s2 :
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
90
  closed S1 T1  closed S2 T2  closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
91
Proof.
92
  intros [? Hstep1] [? Hstep2]; split; [set_solver|].
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
94 95
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97 98 99 100
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
  s2  S  T2  Tf    tok s2  T2  .
Proof.
101
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [? Hstep]??; split_and?; auto.
102
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
103
  - set_solver -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
Qed.
105 106 107 108
Lemma steps_closed s1 s2 T1 T2 S Tf :
  steps (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
  tok s1  T1    s2  S  T2  Tf    tok s2  T2  .
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
109 110 111 112 113
  remember (s1,T1) as sT1 eqn:HsT1; remember (s2,T2) as sT2 eqn:HsT2.
  intros Hsteps; revert s1 T1 HsT1 s2 T2 HsT2.
  induction Hsteps as [?|? [s2 T2] ? Hstep Hsteps IH];
     intros s1 T1 HsT1 s2' T2' ?????; simplify_eq; first done.
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); eauto.
114
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
115 116

(** ** Properties of the closure operators *)
117
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Proof. constructor. Qed.
119
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
121 122
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
123
Lemma closed_up_set S T :
124
  ( s, s  S  tok s  T  )  closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Proof.
126
  intros HS; unfold up_set; split.
127
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
128
    specialize (HS s' Hs'); clear Hs' S.
129
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
131
  - intros s1 s2; rewrite /up; set_unfold; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
132 133
    split; [eapply rtc_r|]; eauto.
Qed.
134
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
Proof.
136
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
137
  apply closed_up_set; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
Qed.
139 140
Lemma closed_up_set_empty S : closed (up_set S ) .
Proof. eauto using closed_up_set with sts. Qed.
141
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
142
Proof. eauto using closed_up with sts. Qed.
143
Lemma up_set_empty S T : up_set S T    S  .
Robbert Krebbers's avatar
Robbert Krebbers committed
144 145
Proof. move:(subseteq_up_set S T). set_solver. Qed.
Lemma up_set_non_empty S T : S    up_set S T  .
146
Proof. by move=>? /up_set_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148
Lemma up_non_empty s T : up s T  .
Proof. eapply non_empty_inhabited, elem_of_up. Qed.
149
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
Proof.
151
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
152 153 154
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156 157 158 159 160 161 162
Lemma up_subseteq s T S : closed S T  s  S  sts.up s T  S.
Proof. move=> ?? s' ?. eauto using closed_steps. Qed.
Lemma up_set_subseteq S1 T S2 : closed S2 T  S1  S2  sts.up_set S1 T  S2.
Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed.
End sts.

Notation steps := (rtc step).
End sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
(* This module should never be imported, uses the module [sts] below. *)
Module sts_dra.
Import sts.

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.

Section sts_dra.
Context {sts : stsT}.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
188 189
Global Existing Instance sts_equiv.
Global Instance sts_valid : Valid (car sts) := λ x,
190 191
  match x with
  | auth s T => tok s  T  
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193
  | frag S' T => closed S' T  S'  
  end.
Ralf Jung's avatar
Ralf Jung committed
194
Global Instance sts_core : Core (car sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
195 196 197 198 199 200 201 202 203 204 205
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
     S1  S2    T1  T2    frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 :
     s  S  T1  T2    auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 :
     s  S  T1  T2    frag S T1  auth s T2.
206 207
Global Existing Instance sts_disjoint.
Global Instance sts_op : Op (car sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
208 209 210 211 212 213 214
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
215 216 217 218
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
219
Global Instance sts_equivalence: Equivalence (() : relation (car sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
220 221
Proof.
  split.
222 223
  - by intros []; constructor.
  - by destruct 1; constructor.
224
  - destruct 1; inversion_clear 1; constructor; etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226
Qed.
Global Instance sts_dra : DRA (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
227 228
Proof.
  split.
229 230 231 232 233
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
  - by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
234
  - destruct 3; simpl in *; destruct_and?; eauto using closed_op;
235
      match goal with H : closed _ _ |- _ => destruct H end; set_solver.
236
  - intros []; simpl; intros; destruct_and?; split;
Robbert Krebbers's avatar
Robbert Krebbers committed
237
      eauto using closed_up, up_non_empty, closed_up_set, up_set_empty with sts.
238 239 240 241 242 243 244 245
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
  - intros [|S T]; constructor; auto using elem_of_up with sts.
  - intros [|S T]; constructor; auto with sts.
  - intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
246
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
247
    + rewrite (up_closed (up_set _ _)); eauto using closed_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
248 249 250
  - intros x y. exists (core (x  y))=> ?? Hxy; split_and?.
    + destruct Hxy; constructor; unfold up_set; set_solver.
    + destruct Hxy; simpl; split_and?;
Robbert Krebbers's avatar
Robbert Krebbers committed
251 252
        auto using closed_up_set_empty, closed_up_empty, up_non_empty; [].
      apply up_set_non_empty. set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
253
    + destruct Hxy; constructor;
254
        repeat match goal with
255 256 257 258
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
259
        end; auto with sts.
260
Qed.
261
Canonical Structure R : cmraT := validityR (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
262 263 264 265
End sts_dra. End sts_dra.

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
266
Notation stsR := (@sts_dra.R).
Robbert Krebbers's avatar
Robbert Krebbers committed
267 268 269

Section sts_definitions.
  Context {sts : stsT}.
270
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
271
    to_validity (sts_dra.auth s T).
272
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
273
    to_validity (sts_dra.frag S T).
274
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276 277 278 279 280 281 282 283 284 285 286 287
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

288
Global Instance sts_cmra_discrete : CMRADiscrete (stsR sts).
289 290
Proof. apply validity_cmra_discrete. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
291 292 293 294 295 296 297
(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
Proof. (* this proof is horrible *)
  intros T1 T2 HT. rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Qed.
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
298
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
299 300
  intros S1 S2 ? T1 T2 HT; rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
302 303
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
Proof. intros T1 T2 HT. by rewrite /sts_frag_up HT. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304

Robbert Krebbers's avatar
Robbert Krebbers committed
305 306
(** Validity *)
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T  .
307
Proof. done. Qed.
308
Lemma sts_frag_valid S T :  sts_frag S T  closed S T  S  .
309
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
Lemma sts_frag_up_valid s T : tok s  T     sts_frag_up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
311
Proof. intros. by apply sts_frag_valid; auto using closed_up, up_non_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
312

Robbert Krebbers's avatar
Robbert Krebbers committed
313 314
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
315
Proof. by intros (?&?&Hdisj); inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
316

Robbert Krebbers's avatar
Robbert Krebbers committed
317 318 319 320
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
321
  intros; split; [split|constructor; set_solver]; simpl.
322
  - intros (?&?&?); by apply closed_disjoint with S.
323
  - intros; split_and?; last constructor; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
324 325
Qed.
Lemma sts_op_auth_frag_up s T :
326 327 328
  sts_auth s   sts_frag_up s T  sts_auth s T.
Proof.
  intros; split; [split|constructor; set_solver]; simpl.
329
  - intros (?&[??]&?). by apply closed_disjoint with (up s T), elem_of_up.
330 331 332
  - intros; split_and?.
    + set_solver+.
    + by apply closed_up.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
    + apply up_non_empty.
334 335
    + constructor; last set_solver. apply elem_of_up.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
336

Ralf Jung's avatar
Ralf Jung committed
337
Lemma sts_op_frag S1 S2 T1 T2 :
338
  T1  T2    sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
339 340
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
341 342
  intros HT HS1 HS2. rewrite /sts_frag.
  (* FIXME why does rewrite not work?? *)
343 344 345
  etrans; last eapply to_validity_op; first done; [].
  move=>/=[??]. split_and!; [auto; set_solver..|].
  constructor; done.
Ralf Jung's avatar
Ralf Jung committed
346 347
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
348 349
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
350
  steps (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
Proof.
352
  intros ?; apply validity_update.
353
  inversion 3 as [|? S ? Tf|]; simplify_eq/=; destruct_and?.
354
  destruct (steps_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto; [].
355
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
356
Qed.
Ralf Jung's avatar
Ralf Jung committed
357

358 359
Lemma sts_update_frag S1 S2 T1 T2 :
  closed S2 T2  S1  S2  T2  T1  sts_frag S1 T1 ~~> sts_frag S2 T2.
360
Proof.
361
  rewrite /sts_frag=> ? HS HT. apply validity_update.
362
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
363 364
  - split_and!; first done; first set_solver. constructor; set_solver.
  - split_and!; first done; first set_solver. constructor; set_solver.
365 366
Qed.

367 368
Lemma sts_update_frag_up s1 S2 T1 T2 :
  closed S2 T2  s1  S2  T2  T1  sts_frag_up s1 T1 ~~> sts_frag S2 T2.
Ralf Jung's avatar
Ralf Jung committed
369
Proof.
370 371
  intros ? ? HT; apply sts_update_frag; [intros; eauto using closed_steps..].
  rewrite <-HT. eapply up_subseteq; done.
Robbert Krebbers's avatar
Robbert Krebbers committed
372 373
Qed.

374 375 376 377 378
Lemma up_set_intersection S1 Sf Tf :
  closed Sf Tf  
  S1  Sf  S1  up_set (S1  Sf) Tf.
Proof.
  intros Hclf. apply (anti_symm ()).
379 380 381
  + move=>s [HS1 HSf]. split. by apply HS1. by apply subseteq_up_set.
  + move=>s [HS1 [s' [/elem_of_mkSet Hsup Hs']]]. split; first done.
    eapply closed_steps, Hsup; first done. set_solver +Hs'.
382 383
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
384
(** Inclusion *)
385 386 387
(* This is surprisingly different from to_validity_included. I am not sure
   whether this is because to_validity_included is non-canonical, or this
   one here is non-canonical - but I suspect both. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
388
Lemma sts_frag_included S1 S2 T1 T2 :
389 390 391 392 393
  closed S2 T2  S2   
  (sts_frag S1 T1  sts_frag S2 T2) 
  (closed S1 T1  S1     Tf, T2  T1  Tf  T1  Tf   
                                 S2  S1  up_set S2 Tf).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
394 395
  intros ??; split.
  - intros [[???] ?]. (* 
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  destruct (to_validity_included (sts_dra.car sts) (sts_dra.frag S1 T1) (sts_dra.frag S2 T2)) as [Hfincl Htoincl].
  intros Hcl2 HS2ne. split.
  - intros Hincl. destruct Hfincl as ((Hcl1 & ?) & (z & EQ & Hval & Hdisj)).
    { split; last done. split; done. }
    clear Htoincl. split_and!; try done; [].
    destruct z as [sf Tf|Sf Tf].
    { exfalso. inversion_clear EQ. }
    exists Tf. inversion_clear EQ as [|? ? ? ? HT2 HS2].
    inversion_clear Hdisj as [? ? ? ? _ HTdisj | |]. split_and!; [done..|].
    rewrite HS2. apply up_set_intersection. apply Hval.
  - intros (Hcl & Hne & (Tf & HT & HTdisj & HS)). destruct Htoincl as ((Hcl' & ?) & (z & EQ)); last first.
    { exists z. exact EQ. } clear Hfincl.
    split; first (split; done). exists (sts_dra.frag (up_set S2 Tf) Tf). split_and!.
    + constructor; done.
    + simpl. split.
      * apply closed_up_set. move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
        set_solver +HT.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
      * by apply up_set_non_empty.
414
    + constructor; last done. by rewrite -HS.
415
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
416
*) Admitted.
417

Robbert Krebbers's avatar
Robbert Krebbers committed
418
Lemma sts_frag_included' S1 S2 T :
419
  closed S2 T  closed S1 T  S2    S1    S2  S1  up_set S2  
Robbert Krebbers's avatar
Robbert Krebbers committed
420
  sts_frag S1 T  sts_frag S2 T.
421
Proof.
422 423
  intros. apply sts_frag_included; split_and?; auto.
  exists ; split_and?; done || set_solver+.
424
Qed.
425
End stsRA.
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

(** STSs without tokens: Some stuff is simpler *)
Module sts_notok.
Structure stsT := STS {
  state : Type;
  prim_step : relation state;
}.
Arguments STS {_} _.
Arguments prim_step {_} _ _.
Notation states sts := (set (state sts)).

Canonical sts_notok (sts : stsT) : sts.stsT :=
  sts.STS (token:=Empty_set) (@prim_step sts) (λ _, ).

Section sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Notation prim_steps := (rtc prim_step).

Lemma sts_step s1 s2 :
  prim_step s1 s2  sts.step (s1, ) (s2, ).
Proof.
  intros. split; set_solver.
Qed.

Lemma sts_steps s1 s2 :
  prim_steps s1 s2  sts.steps (s1, ) (s2, ).
Proof.
  induction 1; eauto using sts_step, rtc_refl, rtc_l.
Qed.

Lemma frame_prim_step T s1 s2 :
  sts.frame_step T s1 s2  prim_step s1 s2.
Proof.
  inversion 1 as [??? Hstep]. inversion_clear Hstep. done.
Qed.

Lemma prim_frame_step T s1 s2 :
  prim_step s1 s2  sts.frame_step T s1 s2.
Proof.
  intros Hstep. apply sts.Frame_step with  ; first set_solver.
  by apply sts_step.
Qed.

Lemma mk_closed S :
  ( s1 s2, s1  S  prim_step s1 s2  s2  S)  sts.closed S .
Proof.
  intros ?. constructor; first by set_solver.
  intros ????. eauto using frame_prim_step.
Qed.

End sts.
Notation steps := (rtc prim_step).
End sts_notok.

Coercion sts_notok.sts_notok : sts_notok.stsT >-> sts.stsT.
Notation sts_notokT := sts_notok.stsT.
Notation STS_NoTok := sts_notok.STS.

Section sts_notokRA.
Import sts_notok.
Context {sts : sts_notokT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Lemma sts_notok_update_auth s1 s2 :
  rtc prim_step s1 s2  sts_auth s1  ~~> sts_auth s2 .
Proof.
  intros. by apply sts_update_auth, sts_steps.
Qed.

End sts_notokRA.