class_instances.v 15 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
From iris.proofmode Require Export classes.
From iris.algebra Require Import upred_big_op gmap upred_tactics.
Import uPred.

Section classes.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.

(* FromAssumption *)
Global Instance from_assumption_exact p P : FromAssumption p P P.
Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed.
Global Instance from_assumption_always_l p P Q :
  FromAssumption p P Q  FromAssumption p ( P) Q.
Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed.
Global Instance from_assumption_always_r P Q :
  FromAssumption true P Q  FromAssumption true P ( Q).
Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
18 19 20
Global Instance from_assumption_rvs p P Q :
  FromAssumption p P Q  FromAssumption p P (|=r=> Q)%I.
Proof. rewrite /FromAssumption=>->. apply rvs_intro. Qed.
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

(* IntoPure *)
Global Instance into_pure_pure φ : @IntoPure M ( φ) φ.
Proof. done. Qed.
Global Instance into_pure_eq {A : cofeT} (a b : A) :
  Timeless a  @IntoPure M (a  b) (a  b).
Proof. intros. by rewrite /IntoPure timeless_eq. Qed.
Global Instance into_pure_valid `{CMRADiscrete A} (a : A) : @IntoPure M ( a) ( a).
Proof. by rewrite /IntoPure discrete_valid. Qed.

(* FromPure *)
Global Instance from_pure_pure φ : @FromPure M ( φ) φ.
Proof. intros ?. by apply pure_intro. Qed.
Global Instance from_pure_eq {A : cofeT} (a b : A) : @FromPure M (a  b) (a  b).
Proof. intros ->. apply eq_refl. Qed.
Global Instance from_pure_valid {A : cmraT} (a : A) : @FromPure M ( a) ( a).
Proof. intros ?. by apply valid_intro. Qed.
38 39
Global Instance from_pure_rvs P φ : FromPure P φ  FromPure (|=r=> P) φ.
Proof. intros ??. by rewrite -rvs_intro (from_pure P). Qed.
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

(* IntoPersistentP *)
Global Instance into_persistentP_always_trans P Q :
  IntoPersistentP P Q  IntoPersistentP ( P) Q | 0.
Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed.
Global Instance into_persistentP_always P : IntoPersistentP ( P) P | 1.
Proof. done. Qed.
Global Instance into_persistentP_persistent P :
  PersistentP P  IntoPersistentP P P | 100.
Proof. done. Qed.

(* IntoLater *)
Global Instance into_later_default P : IntoLater P P | 1000.
Proof. apply later_intro. Qed.
Global Instance into_later_later P : IntoLater ( P) P.
Proof. done. Qed.
Global Instance into_later_and P1 P2 Q1 Q2 :
  IntoLater P1 Q1  IntoLater P2 Q2  IntoLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance into_later_or P1 P2 Q1 Q2 :
  IntoLater P1 Q1  IntoLater P2 Q2  IntoLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance into_later_sep P1 P2 Q1 Q2 :
  IntoLater P1 Q1  IntoLater P2 Q2  IntoLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.

Global Instance into_later_big_sepM `{Countable K} {A}
    (Φ Ψ : K  A  uPred M) (m : gmap K A) :
  ( x k, IntoLater (Φ k x) (Ψ k x)) 
  IntoLater ([ map] k  x  m, Φ k x) ([ map] k  x  m, Ψ k x).
Proof.
  rewrite /IntoLater=> ?. rewrite big_sepM_later; by apply big_sepM_mono.
Qed.
Global Instance into_later_big_sepS `{Countable A}
    (Φ Ψ : A  uPred M) (X : gset A) :
  ( x, IntoLater (Φ x) (Ψ x)) 
  IntoLater ([ set] x  X, Φ x) ([ set] x  X, Ψ x).
Proof.
  rewrite /IntoLater=> ?. rewrite big_sepS_later; by apply big_sepS_mono.
Qed.

(* FromLater *)
Global Instance from_later_later P : FromLater ( P) P.
Proof. done. Qed.
Global Instance from_later_and P1 P2 Q1 Q2 :
  FromLater P1 Q1  FromLater P2 Q2  FromLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance from_later_or P1 P2 Q1 Q2 :
  FromLater P1 Q1  FromLater P2 Q2  FromLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance from_later_sep P1 P2 Q1 Q2 :
  FromLater P1 Q1  FromLater P2 Q2  FromLater (P1  P2) (Q1  Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.

(* IntoWand *)
95 96 97 98 99 100
Global Instance into_wand_wand P Q Q' :
  FromAssumption false Q Q'  IntoWand (P - Q) P Q'.
Proof. by rewrite /FromAssumption /IntoWand /= => ->. Qed.
Global Instance into_wand_impl P Q Q' :
  FromAssumption false Q Q'  IntoWand (P  Q) P Q'.
Proof. rewrite /FromAssumption /IntoWand /= => ->. by rewrite impl_wand. Qed.
101 102 103 104 105 106
Global Instance into_wand_iff_l P Q : IntoWand (P  Q) P Q.
Proof. by apply and_elim_l', impl_wand. Qed.
Global Instance into_wand_iff_r P Q : IntoWand (P  Q) Q P.
Proof. apply and_elim_r', impl_wand. Qed.
Global Instance into_wand_always R P Q : IntoWand R P Q  IntoWand ( R) P Q.
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
107 108 109
Global Instance into_wand_rvs R P Q :
  IntoWand R P Q  IntoWand R (|=r=> P) (|=r=> Q) | 100.
Proof. rewrite /IntoWand=>->. apply wand_intro_l. by rewrite rvs_wand_r. Qed.
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

(* FromAnd *)
Global Instance from_and_and P1 P2 : FromAnd (P1  P2) P1 P2.
Proof. done. Qed.
Global Instance from_and_sep_persistent_l P1 P2 :
  PersistentP P1  FromAnd (P1  P2) P1 P2 | 9.
Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global Instance from_and_sep_persistent_r P1 P2 :
  PersistentP P2  FromAnd (P1  P2) P1 P2 | 10.
Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed.
Global Instance from_and_always P Q1 Q2 :
  FromAnd P Q1 Q2  FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite always_and. Qed.
Global Instance from_and_later P Q1 Q2 :
  FromAnd P Q1 Q2  FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite later_and. Qed.

(* FromSep *)
Global Instance from_sep_sep P1 P2 : FromSep (P1  P2) P1 P2 | 100.
Proof. done. Qed.
Global Instance from_sep_always P Q1 Q2 :
  FromSep P Q1 Q2  FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite always_sep. Qed.
Global Instance from_sep_later P Q1 Q2 :
  FromSep P Q1 Q2  FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite later_sep. Qed.
136 137 138
Global Instance from_sep_rvs P Q1 Q2 :
  FromSep P Q1 Q2  FromSep (|=r=> P) (|=r=> Q1) (|=r=> Q2).
Proof. rewrite /FromSep=><-. apply rvs_sep. Qed.
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

Global Instance from_sep_ownM (a b : M) :
  FromSep (uPred_ownM (a  b)) (uPred_ownM a) (uPred_ownM b) | 99.
Proof. by rewrite /FromSep ownM_op. Qed.
Global Instance from_sep_big_sepM
    `{Countable K} {A} (Φ Ψ1 Ψ2 : K  A  uPred M) m :
  ( k x, FromSep (Φ k x) (Ψ1 k x) (Ψ2 k x)) 
  FromSep ([ map] k  x  m, Φ k x)
    ([ map] k  x  m, Ψ1 k x) ([ map] k  x  m, Ψ2 k x).
Proof.
  rewrite /FromSep=> ?. rewrite -big_sepM_sepM. by apply big_sepM_mono.
Qed.
Global Instance from_sep_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A  uPred M) X :
  ( x, FromSep (Φ x) (Ψ1 x) (Ψ2 x)) 
  FromSep ([ set] x  X, Φ x) ([ set] x  X, Ψ1 x) ([ set] x  X, Ψ2 x).
Proof.
  rewrite /FromSep=> ?. rewrite -big_sepS_sepS. by apply big_sepS_mono.
Qed.

(* IntoOp *)
Global Instance into_op_op {A : cmraT} (a b : A) : IntoOp (a  b) a b.
Proof. by rewrite /IntoOp. Qed.
Global Instance into_op_persistent {A : cmraT} (a : A) :
  Persistent a  IntoOp a a a.
Proof. intros; apply (persistent_dup a). Qed.
Global Instance into_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
  IntoOp a b1 b2  IntoOp a' b1' b2' 
  IntoOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance into_op_Some {A : cmraT} (a : A) b1 b2 :
  IntoOp a b1 b2  IntoOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.

(* IntoSep *)
Global Instance into_sep_sep p P Q : IntoSep p (P  Q) P Q.
Proof. rewrite /IntoSep. by rewrite always_if_sep. Qed.
Global Instance into_sep_ownM p (a b1 b2 : M) :
  IntoOp a b1 b2 
  IntoSep p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
  rewrite /IntoOp /IntoSep=> ->. by rewrite ownM_op always_if_sep.
Qed.

Global Instance into_sep_and P Q : IntoSep true (P  Q) P Q.
Proof. by rewrite /IntoSep /= always_and_sep. Qed.
Global Instance into_sep_and_persistent_l P Q :
  PersistentP P  IntoSep false (P  Q) P Q.
Proof. intros; by rewrite /IntoSep /= always_and_sep_l. Qed.
Global Instance into_sep_and_persistent_r P Q :
  PersistentP Q  IntoSep false (P  Q) P Q.
Proof. intros; by rewrite /IntoSep /= always_and_sep_r. Qed.

Global Instance into_sep_later p P Q1 Q2 :
  IntoSep p P Q1 Q2  IntoSep p ( P) ( Q1) ( Q2).
Proof. by rewrite /IntoSep -later_sep !always_if_later=> ->. Qed.

Global Instance into_sep_big_sepM
    `{Countable K} {A} (Φ Ψ1 Ψ2 : K  A  uPred M) p m :
  ( k x, IntoSep p (Φ k x) (Ψ1 k x) (Ψ2 k x)) 
  IntoSep p ([ map] k  x  m, Φ k x)
    ([ map] k  x  m, Ψ1 k x) ([ map] k  x  m, Ψ2 k x).
Proof.
  rewrite /IntoSep=> ?. rewrite -big_sepM_sepM !big_sepM_always_if.
  by apply big_sepM_mono.
Qed.
Global Instance into_sep_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A  uPred M) p X :
  ( x, IntoSep p (Φ x) (Ψ1 x) (Ψ2 x)) 
  IntoSep p ([ set] x  X, Φ x) ([ set] x  X, Ψ1 x) ([ set] x  X, Ψ2 x).
Proof.
  rewrite /IntoSep=> ?. rewrite -big_sepS_sepS !big_sepS_always_if.
  by apply big_sepS_mono.
Qed.

(* Frame *)
Global Instance frame_here R : Frame R R True.
Proof. by rewrite /Frame right_id. Qed.

Class MakeSep (P Q PQ : uPred M) := make_sep : P  Q  PQ.
Global Instance make_sep_true_l P : MakeSep True P P.
Proof. by rewrite /MakeSep left_id. Qed.
Global Instance make_sep_true_r P : MakeSep P True P.
Proof. by rewrite /MakeSep right_id. Qed.
Global Instance make_sep_default P Q : MakeSep P Q (P  Q) | 100.
Proof. done. Qed.
Global Instance frame_sep_l R P1 P2 Q Q' :
  Frame R P1 Q  MakeSep Q P2 Q'  Frame R (P1  P2) Q' | 9.
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed.
Global Instance frame_sep_r R P1 P2 Q Q' :
  Frame R P2 Q  MakeSep P1 Q Q'  Frame R (P1  P2) Q' | 10.
Proof. rewrite /Frame /MakeSep => <- <-. solve_sep_entails. Qed.

Class MakeAnd (P Q PQ : uPred M) := make_and : P  Q  PQ.
Global Instance make_and_true_l P : MakeAnd True P P.
Proof. by rewrite /MakeAnd left_id. Qed.
Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
235
Global Instance make_and_default P Q : MakeAnd P Q (P  Q) | 100.
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
Proof. done. Qed.
Global Instance frame_and_l R P1 P2 Q Q' :
  Frame R P1 Q  MakeAnd Q P2 Q'  Frame R (P1  P2) Q' | 9.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Global Instance frame_and_r R P1 P2 Q Q' :
  Frame R P2 Q  MakeAnd P1 Q Q'  Frame R (P1  P2) Q' | 10.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.

Class MakeOr (P Q PQ : uPred M) := make_or : P  Q  PQ.
Global Instance make_or_true_l P : MakeOr True P True.
Proof. by rewrite /MakeOr left_absorb. Qed.
Global Instance make_or_true_r P : MakeOr P True True.
Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_default P Q : MakeOr P Q (P  Q) | 100.
Proof. done. Qed.
Global Instance frame_or R P1 P2 Q1 Q2 Q :
  Frame R P1 Q1  Frame R P2 Q2  MakeOr Q1 Q2 Q  Frame R (P1  P2) Q.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.

Global Instance frame_wand R P1 P2 Q2 :
  Frame R P2 Q2  Frame R (P1 - P2) (P1 - Q2).
Proof.
  rewrite /Frame=> ?. apply wand_intro_l.
  by rewrite assoc (comm _ P1) -assoc wand_elim_r.
Qed.

Class MakeLater (P lP : uPred M) := make_later :  P  lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
Global Instance make_later_default P : MakeLater P ( P) | 100.
Proof. done. Qed.

Global Instance frame_later R P Q Q' :
  Frame R P Q  MakeLater Q Q'  Frame R ( P) Q'.
Proof.
  rewrite /Frame /MakeLater=><- <-. by rewrite later_sep -(later_intro R).
Qed.

274
Class MakeNowTrue (P Q : uPred M) := make_now_True :  P  Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276
Global Instance make_now_True_True : MakeNowTrue True True.
Proof. by rewrite /MakeNowTrue now_True_True. Qed.
277 278 279 280 281 282 283 284 285 286
Global Instance make_now_True_default P : MakeNowTrue P ( P) | 100.
Proof. done. Qed.

Global Instance frame_now_true R P Q Q' :
  Frame R P Q  MakeNowTrue Q Q'  Frame R ( P) Q'.
Proof.
  rewrite /Frame /MakeNowTrue=><- <-.
  by rewrite now_True_sep -(now_True_intro R).
Qed.

287 288 289 290 291 292 293
Global Instance frame_exist {A} R (Φ Ψ : A  uPred M) :
  ( a, Frame R (Φ a) (Ψ a))  Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
Global Instance frame_forall {A} R (Φ Ψ : A  uPred M) :
  ( a, Frame R (Φ a) (Ψ a))  Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.

294 295 296
Global Instance frame_rvs R P Q : Frame R P Q  Frame R (|=r=> P) (|=r=> Q).
Proof. rewrite /Frame=><-. by rewrite rvs_frame_l. Qed.

297 298 299
(* FromOr *)
Global Instance from_or_or P1 P2 : FromOr (P1  P2) P1 P2.
Proof. done. Qed.
300 301 302
Global Instance from_or_rvs P Q1 Q2 :
  FromOr P Q1 Q2  FromOr (|=r=> P) (|=r=> Q1) (|=r=> Q2).
Proof. rewrite /FromOr=><-. apply or_elim; apply rvs_mono; auto with I. Qed.
303 304 305 306 307 308 309 310 311 312 313

(* IntoOr *)
Global Instance into_or_or P Q : IntoOr (P  Q) P Q.
Proof. done. Qed.
Global Instance into_or_later P Q1 Q2 :
  IntoOr P Q1 Q2  IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.

(* FromExist *)
Global Instance from_exist_exist {A} (Φ: A  uPred M): FromExist ( a, Φ a) Φ.
Proof. done. Qed.
314 315 316 317 318
Global Instance from_exist_rvs {A} P (Φ : A  uPred M) :
  FromExist P Φ  FromExist (|=r=> P) (λ a, |=r=> Φ a)%I.
Proof.
  rewrite /FromExist=><-. apply exist_elim=> a. by rewrite -(exist_intro a).
Qed.
319 320 321 322 323 324 325 326 327 328

(* IntoExist *)
Global Instance into_exist_exist {A} (Φ : A  uPred M) : IntoExist ( a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_exist_later {A} P (Φ : A  uPred M) :
  IntoExist P Φ  Inhabited A  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_always {A} P (Φ : A  uPred M) :
  IntoExist P Φ  IntoExist ( P) (λ a,  (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed.
329

330 331 332 333 334 335 336
(* IntoNowTrue *)
Global Instance into_now_True_now_True P : IntoNowTrue ( P) P.
Proof. done. Qed.
Global Instance into_now_True_timeless P : TimelessP P  IntoNowTrue ( P) P.
Proof. done. Qed.

(* IsNowTrue *)
337 338 339 340
Global Instance is_now_True_now_True P : IsNowTrue ( P).
Proof. by rewrite /IsNowTrue now_True_idemp. Qed.
Global Instance is_now_True_later P : IsNowTrue ( P).
Proof. by rewrite /IsNowTrue now_True_later. Qed.
341 342
Global Instance is_now_True_rvs P : IsNowTrue P  IsNowTrue (|=r=> P).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
343 344
  rewrite /IsNowTrue=> HP.
  by rewrite -{2}HP -(now_True_idemp P) -now_True_rvs -(now_True_intro P).
345
Qed.
346 347 348 349 350 351 352 353

(* FromViewShift *)
Global Instance from_vs_rvs P : FromVs (|=r=> P) P.
Proof. done. Qed.

(* ElimViewShift *)
Global Instance elim_vs_rvs_rvs P Q : ElimVs (|=r=> P) P (|=r=> Q) (|=r=> Q).
Proof. by rewrite /ElimVs rvs_frame_r wand_elim_r rvs_trans. Qed.
354
End classes.