auth.v 9.99 KB
Newer Older
1
From algebra Require Export excl.
2
From algebra Require Import functor upred.
3
Local Arguments valid _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
4
Local Arguments validN _ _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
5

Robbert Krebbers's avatar
Robbert Krebbers committed
6
Record auth (A : Type) : Type := Auth { authoritative : excl A ; own : A }.
7
Add Printing Constructor auth.
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Arguments Auth {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Arguments authoritative {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
Arguments own {_} _.
11 12
Notation "◯ a" := (Auth ExclUnit a) (at level 20).
Notation "● a" := (Auth (Excl a) ) (at level 20).
Robbert Krebbers's avatar
Robbert Krebbers committed
13

Robbert Krebbers's avatar
Robbert Krebbers committed
14
(* COFE *)
15 16
Section cofe.
Context {A : cofeT}.
17 18
Implicit Types a : excl A.
Implicit Types b : A.
19
Implicit Types x y : auth A.
20 21

Instance auth_equiv : Equiv (auth A) := λ x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
22
  authoritative x  authoritative y  own x  own y.
23
Instance auth_dist : Dist (auth A) := λ n x y,
24
  authoritative x {n} authoritative y  own x {n} own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26
Global Instance Auth_ne : Proper (dist n ==> dist n ==> dist n) (@Auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Proof. by split. Qed.
28 29
Global Instance Auth_proper : Proper (() ==> () ==> ()) (@Auth A).
Proof. by split. Qed.
30
Global Instance authoritative_ne: Proper (dist n ==> dist n) (@authoritative A).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Proof. by destruct 1. Qed.
32 33
Global Instance authoritative_proper : Proper (() ==> ()) (@authoritative A).
Proof. by destruct 1. Qed.
34
Global Instance own_ne : Proper (dist n ==> dist n) (@own A).
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Proof. by destruct 1. Qed.
36 37
Global Instance own_proper : Proper (() ==> ()) (@own A).
Proof. by destruct 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
38

39
Instance auth_compl : Compl (auth A) := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  Auth (compl (chain_map authoritative c)) (compl (chain_map own c)).
41
Definition auth_cofe_mixin : CofeMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
42 43
Proof.
  split.
44
  - intros x y; unfold dist, auth_dist, equiv, auth_equiv.
Robbert Krebbers's avatar
Robbert Krebbers committed
45
    rewrite !equiv_dist; naive_solver.
46
  - intros n; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
47 48
    + by intros ?; split.
    + by intros ?? [??]; split; symmetry.
49
    + intros ??? [??] [??]; split; etrans; eauto.
50
  - by intros ? [??] [??] [??]; split; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
51 52
  - intros n c; split. apply (conv_compl n (chain_map authoritative c)).
    apply (conv_compl n (chain_map own c)).
Robbert Krebbers's avatar
Robbert Krebbers committed
53
Qed.
54
Canonical Structure authC := CofeT auth_cofe_mixin.
55 56 57 58 59 60

Global Instance Auth_timeless a b :
  Timeless a  Timeless b  Timeless (Auth a b).
Proof. by intros ?? [??] [??]; split; apply: timeless. Qed.
Global Instance auth_discrete : Discrete A  Discrete authC.
Proof. intros ? [??]; apply _. Qed.
61
Global Instance auth_leibniz : LeibnizEquiv A  LeibnizEquiv (auth A).
62
Proof. by intros ? [??] [??] [??]; f_equal/=; apply leibniz_equiv. Qed.
63 64 65
End cofe.

Arguments authC : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
66 67

(* CMRA *)
68 69
Section cmra.
Context {A : cmraT}.
70 71
Implicit Types a b : A.
Implicit Types x y : auth A.
72 73

Global Instance auth_empty `{Empty A} : Empty (auth A) := Auth  .
74 75 76 77 78 79 80
Instance auth_valid : Valid (auth A) := λ x,
  match authoritative x with
  | Excl a => own x  a   a
  | ExclUnit =>  own x
  | ExclBot => False
  end.
Global Arguments auth_valid !_ /.
81
Instance auth_validN : ValidN (auth A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
82
  match authoritative x with
Robbert Krebbers's avatar
Robbert Krebbers committed
83
  | Excl a => own x {n} a  {n} a
84
  | ExclUnit => {n} own x
85
  | ExclBot => False
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  end.
87 88
Global Arguments auth_validN _ !_ /.
Instance auth_unit : Unit (auth A) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
89
  Auth (unit (authoritative x)) (unit (own x)).
90
Instance auth_op : Op (auth A) := λ x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
91
  Auth (authoritative x  authoritative y) (own x  own y).
92
Instance auth_minus : Minus (auth A) := λ x y,
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  Auth (authoritative x  authoritative y) (own x  own y).
94

95
Lemma auth_included (x y : auth A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
96 97 98 99 100
  x  y  authoritative x  authoritative y  own x  own y.
Proof.
  split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
  intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
101
Lemma authoritative_validN n (x : auth A) : {n} x  {n} authoritative x.
Robbert Krebbers's avatar
Robbert Krebbers committed
102
Proof. by destruct x as [[]]. Qed.
103
Lemma own_validN n (x : auth A) : {n} x  {n} own x.
104
Proof. destruct x as [[]]; naive_solver eauto using cmra_validN_includedN. Qed.
105 106

Definition auth_cmra_mixin : CMRAMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108
Proof.
  split.
109 110 111
  - by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
  - by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
  - intros n [x a] [y b] [Hx Ha]; simpl in *;
112
      destruct Hx; intros ?; cofe_subst; auto.
113
  - by intros n x1 x2 [Hx Hx'] y1 y2 [Hy Hy'];
Robbert Krebbers's avatar
Robbert Krebbers committed
114
      split; simpl; rewrite ?Hy ?Hy' ?Hx ?Hx'.
115 116
  - intros [[] ?]; rewrite /= ?cmra_included_includedN ?cmra_valid_validN;
      naive_solver eauto using O.
117 118 119 120 121
  - intros n [[] ?] ?; naive_solver eauto using cmra_includedN_S, cmra_validN_S.
  - by split; simpl; rewrite assoc.
  - by split; simpl; rewrite comm.
  - by split; simpl; rewrite ?cmra_unit_l.
  - by split; simpl; rewrite ?cmra_unit_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123
  - intros ??; rewrite! auth_included; intros [??].
    by split; simpl; apply cmra_unit_preserving.
124
  - assert ( n (a b1 b2 : A), b1  b2 {n} a  b1 {n} a).
125
    { intros n a b1 b2 <-; apply cmra_includedN_l. }
Robbert Krebbers's avatar
Robbert Krebbers committed
126
   intros n [[a1| |] b1] [[a2| |] b2];
127
     naive_solver eauto using cmra_validN_op_l, cmra_validN_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
  - by intros ??; rewrite auth_included;
Robbert Krebbers's avatar
Robbert Krebbers committed
129
      intros [??]; split; simpl; apply cmra_op_minus.
130 131 132 133 134 135
  - intros n x y1 y2 ? [??]; simpl in *.
    destruct (cmra_extend n (authoritative x) (authoritative y1)
      (authoritative y2)) as (ea&?&?&?); auto using authoritative_validN.
    destruct (cmra_extend n (own x) (own y1) (own y2))
      as (b&?&?&?); auto using own_validN.
    by exists (Auth (ea.1) (b.1), Auth (ea.2) (b.2)).
Robbert Krebbers's avatar
Robbert Krebbers committed
136
Qed.
137
Canonical Structure authRA : cmraT := CMRAT auth_cofe_mixin auth_cmra_mixin.
138 139 140 141 142 143
Global Instance auth_cmra_discrete : CMRADiscrete A  CMRADiscrete authRA.
Proof.
  split; first apply _.
  intros [[] ?]; by rewrite /= /cmra_valid /cmra_validN /=
    -?cmra_discrete_included_iff -?cmra_discrete_valid_iff.
Qed.
144

145 146 147
(** Internalized properties *)
Lemma auth_equivI {M} (x y : auth A) :
  (x  y)%I  (authoritative x  authoritative y  own x  own y : uPred M)%I.
148
Proof. by uPred.unseal. Qed.
149 150 151 152 153 154
Lemma auth_validI {M} (x : auth A) :
  ( x)%I  (match authoritative x with
             | Excl a => ( b, a  own x  b)   a
             | ExclUnit =>  own x
             | ExclBot => False
             end : uPred M)%I.
155
Proof. uPred.unseal. by destruct x as [[]]. Qed.
156

157 158 159 160 161
(** The notations ◯ and ● only work for CMRAs with an empty element. So, in
what follows, we assume we have an empty element. *)
Context `{Empty A, !CMRAIdentity A}.

Global Instance auth_cmra_identity : CMRAIdentity authRA.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
Proof.
163
  split; simpl.
164 165 166
  - by apply (@cmra_empty_valid A _).
  - by intros x; constructor; rewrite /= left_id.
  - apply _.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
Qed.
168
Lemma auth_frag_op a b :  (a  b)   a   b.
Robbert Krebbers's avatar
Robbert Krebbers committed
169
Proof. done. Qed.
170 171
Lemma auth_both_op a b : Auth (Excl a) b   a   b.
Proof. by rewrite /op /auth_op /= left_id. Qed.
172 173

Lemma auth_update a a' b b' :
Ralf Jung's avatar
Ralf Jung committed
174
  ( n af, {n} a  a {n} a'  af  b {n} b'  af  {n} b) 
175
   a   a' ~~>  b   b'.
176
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
  move=> Hab n [[?| |] bf1] // =>-[[bf2 Ha] ?]; do 2 red; simpl in *.
178
  destruct (Hab n (bf1  bf2)) as [Ha' ?]; auto.
179 180
  { by rewrite Ha left_id assoc. }
  split; [by rewrite Ha' left_id assoc; apply cmra_includedN_l|done].
181
Qed.
182

183
Lemma auth_local_update L `{!LocalUpdate Lv L} a a' :
184
  Lv a   L a' 
185
   a'   a ~~>  L a'   L a.
186
Proof.
187
  intros. apply auth_update=>n af ? EQ; split; last by apply cmra_valid_validN.
188
  by rewrite EQ (local_updateN L) // -EQ.
189
Qed.
190 191 192 193

Lemma auth_update_op_l a a' b :
   (b  a)   a   a' ~~>  (b  a)   (b  a').
Proof. by intros; apply (auth_local_update _). Qed.
194
Lemma auth_update_op_r a a' b :
195
   (a  b)   a   a' ~~>  (a  b)   (a'  b).
196
Proof. rewrite -!(comm _ b); apply auth_update_op_l. Qed.
197

Ralf Jung's avatar
Ralf Jung committed
198
(* This does not seem to follow from auth_local_update.
199
   The trouble is that given ✓ (L a ⋅ a'), Lv a
Ralf Jung's avatar
Ralf Jung committed
200 201
   we need ✓ (a ⋅ a'). I think this should hold for every local update,
   but adding an extra axiom to local updates just for this is silly. *)
202 203 204
Lemma auth_local_update_l L `{!LocalUpdate Lv L} a a' :
  Lv a   (L a  a') 
   (a  a')   a ~~>  (L a  a')   L a.
Ralf Jung's avatar
Ralf Jung committed
205
Proof.
206
  intros. apply auth_update=>n af ? EQ; split; last by apply cmra_valid_validN.
207
  by rewrite -(local_updateN L) // EQ -(local_updateN L) // -EQ.
Ralf Jung's avatar
Ralf Jung committed
208
Qed.
209 210 211
End cmra.

Arguments authRA : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
212 213

(* Functor *)
214 215 216 217 218 219 220 221 222 223 224 225
Definition auth_map {A B} (f : A  B) (x : auth A) : auth B :=
  Auth (excl_map f (authoritative x)) (f (own x)).
Lemma auth_map_id {A} (x : auth A) : auth_map id x = x.
Proof. by destruct x; rewrite /auth_map excl_map_id. Qed.
Lemma auth_map_compose {A B C} (f : A  B) (g : B  C) (x : auth A) :
  auth_map (g  f) x = auth_map g (auth_map f x).
Proof. by destruct x; rewrite /auth_map excl_map_compose. Qed.
Lemma auth_map_ext {A B : cofeT} (f g : A  B) x :
  ( x, f x  g x)  auth_map f x  auth_map g x.
Proof. constructor; simpl; auto using excl_map_ext. Qed.
Instance auth_map_cmra_ne {A B : cofeT} n :
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@auth_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
226
Proof.
227
  intros f g Hf [??] [??] [??]; split; [by apply excl_map_cmra_ne|by apply Hf].
Robbert Krebbers's avatar
Robbert Krebbers committed
228
Qed.
229 230
Instance auth_map_cmra_monotone {A B : cmraT} (f : A  B) :
  CMRAMonotone f  CMRAMonotone (auth_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
231
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
232 233 234 235 236
  split; try apply _.
  - intros n [[a| |] b]; rewrite /= /cmra_validN /=; try
      naive_solver eauto using includedN_preserving, validN_preserving.
  - by intros [x a] [y b]; rewrite !auth_included /=;
      intros [??]; split; simpl; apply: included_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
237
Qed.
238
Definition authC_map {A B} (f : A -n> B) : authC A -n> authC B :=
239
  CofeMor (auth_map f).
240
Lemma authC_map_ne A B n : Proper (dist n ==> dist n) (@authC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
241
Proof. intros f f' Hf [[a| |] b]; repeat constructor; apply Hf. Qed.
Ralf Jung's avatar
Ralf Jung committed
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Program Definition authF (Σ : iFunctor) : iFunctor := {|
  ifunctor_car := authRA  Σ; ifunctor_map A B := authC_map  ifunctor_map Σ
|}.
Next Obligation.
  by intros Σ A B n f g Hfg; apply authC_map_ne, ifunctor_map_ne.
Qed.
Next Obligation.
  intros Σ A x. rewrite /= -{2}(auth_map_id x).
  apply auth_map_ext=>y; apply ifunctor_map_id.
Qed.
Next Obligation.
  intros Σ A B C f g x. rewrite /= -auth_map_compose.
  apply auth_map_ext=>y; apply ifunctor_map_compose.
Qed.