sts.v 13.1 KB
Newer Older
1
From prelude Require Export sets.
2 3
From algebra Require Export cmra.
From algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Local Arguments unit _ _ !_ /.

8
Module sts.
Ralf Jung's avatar
Ralf Jung committed
9

Robbert Krebbers's avatar
Robbert Krebbers committed
10
Record stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11 12 13 14 15
  state : Type;
  token : Type;
  trans : relation state;
  tok   : state  set token;
}.
16
Arguments STS {_ _} _ _.
Ralf Jung's avatar
Ralf Jung committed
17 18 19

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
20
Inductive bound (sts : stsT) :=
Ralf Jung's avatar
Ralf Jung committed
21 22 23 24 25
  | bound_auth : state sts  set (token sts)  bound sts
  | bound_frag : set (state sts)  set (token sts ) bound sts.
Arguments bound_auth {_} _ _.
Arguments bound_frag {_} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
26
Section sts_core.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Context (sts : stsT).
Robbert Krebbers's avatar
Robbert Krebbers committed
28
Infix "≼" := dra_included.
Robbert Krebbers's avatar
Robbert Krebbers committed
29

Ralf Jung's avatar
Ralf Jung committed
30 31 32 33 34 35 36 37 38 39 40
Notation state := (state sts).
Notation token := (token sts).
Notation trans := (trans sts).
Notation tok := (tok sts).

Inductive equiv : Equiv (bound sts) :=
  | auth_equiv s T1 T2 : T1  T2  bound_auth s T1  bound_auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2 
                             bound_frag S1 T1  bound_frag S2 T2.
Global Existing Instance equiv.
Inductive step : relation (state * set token) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  | Step s1 s2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
42 43
     trans s1 s2  tok s1  T1    tok s2  T2   
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
44
Hint Resolve Step.
Ralf Jung's avatar
Ralf Jung committed
45
Inductive frame_step (T : set token) (s1 s2 : state) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
46
  | Frame_step T1 T2 :
47
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
48
Hint Resolve Frame_step.
Ralf Jung's avatar
Ralf Jung committed
49
Record closed (S : set state) (T : set token) : Prop := Closed {
50
  closed_ne : S  ;
51
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
52 53 54
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Lemma closed_steps S T s1 s2 :
55
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
56
Proof. induction 3; eauto using closed_step. Qed.
Ralf Jung's avatar
Ralf Jung committed
57
Global Instance valid : Valid (bound sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
58
  match x with
Ralf Jung's avatar
Ralf Jung committed
59
  | bound_auth s T => tok s  T   | bound_frag S' T => closed S' T
Robbert Krebbers's avatar
Robbert Krebbers committed
60
  end.
Ralf Jung's avatar
Ralf Jung committed
61 62
Definition up (s : state) (T : set token) : set state :=
  mkSet (rtc (frame_step T) s).
Robbert Krebbers's avatar
Robbert Krebbers committed
63 64
Definition up_set (S : set state) (T : set token) : set state :=
  S = λ s, up s T.
Ralf Jung's avatar
Ralf Jung committed
65 66 67 68 69 70
Global Instance unit : Unit (bound sts) := λ x,
  match x with
  | bound_frag S' _ => bound_frag (up_set S'  ) 
  | bound_auth s _  => bound_frag (up s ) 
  end.
Inductive disjoint : Disjoint (bound sts) :=
71
  | frag_frag_disjoint S1 S2 T1 T2 :
Ralf Jung's avatar
Ralf Jung committed
72 73 74 75 76 77 78
     S1  S2    T1  T2    bound_frag S1 T1  bound_frag S2 T2
  | auth_frag_disjoint s S T1 T2 : s  S  T1  T2   
                                   bound_auth s T1  bound_frag S T2
  | frag_auth_disjoint s S T1 T2 : s  S  T1  T2   
                                   bound_frag S T1  bound_auth s T2.
Global Existing Instance disjoint.
Global Instance op : Op (bound sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
79
  match x1, x2 with
Ralf Jung's avatar
Ralf Jung committed
80 81 82 83 84
  | bound_frag S1 T1, bound_frag S2 T2 => bound_frag (S1  S2) (T1  T2)
  | bound_auth s T1, bound_frag _ T2 => bound_auth s (T1  T2)
  | bound_frag _ T1, bound_auth s T2 => bound_auth s (T1  T2)
  | bound_auth s T1, bound_auth _ T2 =>
    bound_auth s (T1  T2)(* never happens *)
Robbert Krebbers's avatar
Robbert Krebbers committed
85
  end.
Ralf Jung's avatar
Ralf Jung committed
86
Global Instance minus : Minus (bound sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
87
  match x1, x2 with
Ralf Jung's avatar
Ralf Jung committed
88 89 90 91 92 93
  | bound_frag S1 T1, bound_frag S2 T2 => bound_frag
                                            (up_set S1 (T1  T2)) (T1  T2)
  | bound_auth s T1, bound_frag _ T2 => bound_auth s (T1  T2)
  | bound_frag _ T2, bound_auth s T1 =>
    bound_auth s (T1  T2) (* never happens *)
  | bound_auth s T1, bound_auth _ T2 => bound_frag (up s (T1  T2)) (T1  T2)
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95
  end.

Ralf Jung's avatar
Ralf Jung committed
96 97
Hint Extern 10 (base.equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (¬(base.equiv (A:=set _) _ _)) => solve_elem_of : sts.
98 99
Hint Extern 10 (_  _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Ralf Jung's avatar
Ralf Jung committed
100
Instance: Equivalence (() : relation (bound sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103 104 105 106
Proof.
  split.
  * by intros []; constructor.
  * by destruct 1; constructor.
  * destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
Qed.
107 108 109
Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> impl) frame_step.
Proof. intros ?? HT ?? <- ?? <-; destruct 1; econstructor; eauto with sts. Qed.
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
Proof.
111
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
112
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
113
Qed.
114 115
Instance closed_proper : Proper (() ==> () ==> iff) closed.
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
116
Lemma closed_op T1 T2 S1 S2 :
117 118
  closed S1 T1  closed S2 T2 
  T1  T2    S1  S2    closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
119
Proof.
120
  intros [_ ? Hstep1] [_ ? Hstep2] ?; split; [done|solve_elem_of|].
121 122 123
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
  * apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  * apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
Qed.
125
Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
126
Proof.
127
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
  eapply rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Qed.
131 132
Instance up_proper : Proper ((=) ==> () ==> ()) up.
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Ralf Jung's avatar
Ralf Jung committed
133 134 135 136 137
Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Qed.
138
Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
140
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
Proof. constructor. Qed.
142
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
144 145
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
146
Lemma closed_up_set S T :
147
  ( s, s  S  tok s  T  )  S    closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Proof.
149
  intros HS Hne; unfold up_set; split.
150
  * assert ( s, s  up s T) by eauto using elem_of_up. solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  * intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
152
    specialize (HS s' Hs'); clear Hs' Hne S.
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154 155 156 157
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; auto.
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
  * intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s.
    split; [eapply rtc_r|]; eauto.
Qed.
158
Lemma closed_up_set_empty S : S    closed (up_set S ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
159
Proof. eauto using closed_up_set with sts. Qed.
160
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
161
Proof.
162
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
163
  apply closed_up_set; solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
164
Qed.
165
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
166
Proof. eauto using closed_up with sts. Qed.
167
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
Proof.
169
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
170 171 172
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Ralf Jung's avatar
Ralf Jung committed
173
Global Instance dra : DRA (bound sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
174 175 176 177 178 179 180 181
Proof.
  split.
  * apply _.
  * by do 2 destruct 1; constructor; setoid_subst.
  * by destruct 1; constructor; setoid_subst.
  * by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
  * by do 2 destruct 1; constructor; setoid_subst.
  * assert ( T T' S s,
182
      closed S T  s  S  tok s  T'    tok s  (T  T')  ).
183
    { intros S T T' s [??]; solve_elem_of. }
Robbert Krebbers's avatar
Robbert Krebbers committed
184
    destruct 3; simpl in *; auto using closed_op with sts.
185
  * intros []; simpl; eauto using closed_up, closed_up_set, closed_ne with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
186 187
  * intros ???? (z&Hy&?&Hxz); destruct Hxz; inversion Hy;clear Hy; setoid_subst;
      rewrite ?disjoint_union_difference; auto using closed_up with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
188
    eapply closed_up_set; eauto 2 using closed_disjoint with sts.
189
  * intros [] [] []; constructor; rewrite ?assoc; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191 192 193
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 1; constructor; auto with sts.
  * destruct 3; constructor; auto with sts.
194
  * intros [|S T]; constructor; auto using elem_of_up with sts.
195
    assert (S  up_set S   S  ) by eauto using subseteq_up_set, closed_ne.
196
    solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  * intros [|S T]; constructor; auto with sts.
198
    assert (S  up_set S ); auto using subseteq_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
199
  * intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
200 201 202
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
    + rewrite (up_closed (up_set _ _));
        eauto using closed_up_set, closed_ne with sts.
203
  * intros x y ?? (z&Hy&?&Hxz); exists (unit (x  y)); split_ands.
204
    + destruct Hxz;inversion_clear Hy;constructor;unfold up_set; solve_elem_of.
205 206 207 208
    + destruct Hxz; inversion_clear Hy; simpl;
        auto using closed_up_set_empty, closed_up_empty with sts.
    + destruct Hxz; inversion_clear Hy; constructor;
        repeat match goal with
209 210 211 212
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
213 214 215
        end; auto with sts.
  * intros x y ?? (z&Hy&_&Hxz); destruct Hxz; inversion_clear Hy; constructor;
      repeat match goal with
216 217 218 219
      | |- context [ up_set ?S ?T ] =>
         unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
      | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
220
      end; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
221 222
  * intros x y ?? (z&Hy&?&Hxz); destruct Hxz as [S1 S2 T1 T2| |];
      inversion Hy; clear Hy; constructor; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
223
      rewrite ?disjoint_union_difference; auto.
224
    split; [|apply intersection_greatest; auto using subseteq_up_set with sts].
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226 227 228
    apply intersection_greatest; [auto with sts|].
    intros s2; rewrite elem_of_intersection.
    unfold up_set; rewrite elem_of_bind; intros (?&s1&?&?&?).
    apply closed_steps with T2 s1; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
229 230
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
231
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
232
  s2  S  T2  Tf    tok s2  T2  .
Robbert Krebbers's avatar
Robbert Krebbers committed
233
Proof.
234
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [?? Hstep]??; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  * eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
236
  * solve_elem_of -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
237 238 239
Qed.
End sts_core.

240
Section stsRA.
Robbert Krebbers's avatar
Robbert Krebbers committed
241
Context (sts : stsT).
Robbert Krebbers's avatar
Robbert Krebbers committed
242

Ralf Jung's avatar
Ralf Jung committed
243 244 245 246 247
Canonical Structure RA := validityRA (bound sts).
Definition auth (s : state sts) (T : set (token sts)) : RA :=
  to_validity (bound_auth s T).
Definition frag (S : set (state sts)) (T : set (token sts)) : RA :=
  to_validity (bound_frag S T).
Ralf Jung's avatar
Ralf Jung committed
248

Ralf Jung's avatar
Ralf Jung committed
249 250
Lemma update_auth s1 s2 T1 T2 :
  step sts (s1,T1) (s2,T2)  auth s1 T1 ~~> auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
251
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
252
  intros ?; apply validity_update; inversion 3 as [|? S ? Tf|]; subst.
Ralf Jung's avatar
Ralf Jung committed
253
  destruct (step_closed sts s1 s2 T1 T2 S Tf) as (?&?&?); auto.
254
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
255
Qed.
Ralf Jung's avatar
Ralf Jung committed
256

Ralf Jung's avatar
Ralf Jung committed
257 258 259
Lemma sts_update_frag S1 S2 (T : set (token sts)) :
  S1  S2  closed sts S2 T 
  frag S1 T ~~> frag S2 T.
260 261 262 263 264 265
Proof.
  move=>HS Hcl. eapply validity_update; inversion 3 as [|? S ? Tf|]; subst.
  - split; first done. constructor; last done. solve_elem_of.
  - split; first done. constructor; solve_elem_of.
Qed.

Ralf Jung's avatar
Ralf Jung committed
266 267 268 269 270
Lemma frag_included S1 S2 T1 T2 :
  closed sts S2 T2 
  frag S1 T1  frag S2 T2  
  (closed sts S1 T1   Tf, T2  T1  Tf  T1  Tf   
                            S2  (S1  up_set sts S2 Tf)).
Ralf Jung's avatar
Ralf Jung committed
271
Proof.
272 273
  move=>Hcl2. split.
  - intros [xf EQ]. destruct xf as [xf vf Hvf]. destruct xf as [Sf Tf|Sf Tf].
274
    { exfalso. inversion_clear EQ as [Hv EQ']. apply EQ' in Hcl2. simpl in Hcl2.
275
      inversion Hcl2. }
276 277 278
    inversion_clear EQ as [Hv EQ'].
    move:(EQ' Hcl2)=>{EQ'} EQ. inversion_clear EQ as [|? ? ? ? HT HS].
    destruct Hv as [Hv _]. move:(Hv Hcl2)=>{Hv} [/= Hcl1  [Hclf Hdisj]].
279 280 281
    apply Hvf in Hclf. simpl in Hclf. clear Hvf.
    inversion_clear Hdisj. split; last (exists Tf; split_ands); [done..|].
    apply (anti_symm ()).
282
    + move=>s HS2. apply elem_of_intersection. split; first by apply HS.
283
      by apply sts.subseteq_up_set.
284
    + move=>s /elem_of_intersection [HS1 Hscl]. apply HS. split; first done.
285 286
      destruct Hscl as [s' [Hsup Hs']].
      eapply sts.closed_steps; last (hnf in Hsup; eexact Hsup); first done.
287
      solve_elem_of +HS Hs'.
Ralf Jung's avatar
Ralf Jung committed
288 289
  - intros (Hcl1 & Tf & Htk & Hf & Hs).
    exists (frag (up_set sts S2 Tf) Tf).
290 291 292
    split; first split; simpl;[|done|].
    + intros _. split_ands; first done.
      * apply sts.closed_up_set; last by eapply sts.closed_ne.
Ralf Jung's avatar
Ralf Jung committed
293
        move=>s Hs2. move:(closed_disjoint sts _ _ Hcl2 _ Hs2).
Ralf Jung's avatar
Ralf Jung committed
294
        solve_elem_of +Htk.
295 296 297 298
      * constructor; last done. rewrite -Hs. by eapply sts.closed_ne.
    + intros _. constructor; [ solve_elem_of +Htk | done].
Qed.

Ralf Jung's avatar
Ralf Jung committed
299 300
Lemma frag_included' S1 S2 T :
  closed sts S2 T  closed sts S1 T 
Robbert Krebbers's avatar
Robbert Krebbers committed
301
  S2  S1  sts.up_set sts S2  
Ralf Jung's avatar
Ralf Jung committed
302
  frag S1 T  frag S2 T.
303
Proof.
Ralf Jung's avatar
Ralf Jung committed
304
  intros. apply frag_included; first done.
305 306
  split; first done. exists . split_ands; done || solve_elem_of+.
Qed.
Ralf Jung's avatar
Ralf Jung committed
307

308
End stsRA.
Ralf Jung's avatar
Ralf Jung committed
309 310

End sts.