sts.v 18.2 KB
Newer Older
1
From iris.prelude Require Export set.
2 3
From iris.algebra Require Export cmra.
From iris.algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Ralf Jung's avatar
Ralf Jung committed
6
Local Arguments core _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11 12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26 27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
29
     prim_step s1 s2  tok s1  T1  tok s2  T2 
Ralf Jung's avatar
Ralf Jung committed
30
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Notation steps := (rtc step).
Robbert Krebbers's avatar
Robbert Krebbers committed
32
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
33
  (* Probably equivalent definition: (\mathcal{L}(s') ⊥ T) ∧ s \rightarrow s' *)
Robbert Krebbers's avatar
Robbert Krebbers committed
34
  | Frame_step T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
35
     T1  tok s1  T  step (s1,T1) (s2,T2)  frame_step T s1 s2.
Ralf Jung's avatar
Ralf Jung committed
36
Notation frame_steps T := (rtc (frame_step T)).
Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
Robbert Krebbers's avatar
Robbert Krebbers committed
40
  closed_disjoint s : s  S  tok s  T;
Robbert Krebbers's avatar
Robbert Krebbers committed
41 42
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
43
Definition up (s : state sts) (T : tokens sts) : states sts :=
Ralf Jung's avatar
Ralf Jung committed
44
  {[ s' | frame_steps T s s' ]}.
Robbert Krebbers's avatar
Robbert Krebbers committed
45
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
46
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
47

Robbert Krebbers's avatar
Robbert Krebbers committed
48 49
(** Tactic setup *)
Hint Resolve Step.
50 51 52 53
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
54
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
55 56

(** ** Setoids *)
Ralf Jung's avatar
Ralf Jung committed
57 58 59
Instance framestep_mono : Proper (flip () ==> (=) ==> (=) ==> impl) frame_step.
Proof.
  intros ?? HT ?? <- ?? <-; destruct 1; econstructor;
60
    eauto with sts; set_solver.
Ralf Jung's avatar
Ralf Jung committed
61
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
63
Proof. move=> ?? /collection_equiv_spec [??]; split; by apply framestep_mono. Qed.
64
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
Proof. destruct 3; constructor; intros until 0; setoid_subst; eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
67
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
68
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Proof.
70
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
72
  eapply elem_of_mkSet, rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
75 76 77
Proof.
  by move=> ??? ?? /collection_equiv_spec [??]; split; apply up_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
79 80
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
81
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Ralf Jung's avatar
Ralf Jung committed
82
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
84 85 86 87
Proof.
  move=> S1 S2 /collection_equiv_spec [??] T1 T2 /collection_equiv_spec [??];
    split; by apply up_set_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89 90

(** ** Properties of closure under frame steps *)
Lemma closed_steps S T s1 s2 :
Ralf Jung's avatar
Ralf Jung committed
91
  closed S T  s1  S  frame_steps T s1 s2  s2  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
94
  closed S1 T1  closed S2 T2  closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
95
Proof.
96
  intros [? Hstep1] [? Hstep2]; split; [set_solver|].
Robbert Krebbers's avatar
Robbert Krebbers committed
97
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
98 99
  - apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  - apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
100 101
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
102 103
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  s2  S  T2  Tf  tok s2  T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
104
Proof.
105
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [? Hstep]??; split_and?; auto.
106
  - eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
107
  - set_solver -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
Qed.
109
Lemma steps_closed s1 s2 T1 T2 S Tf :
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111
  steps (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf 
  tok s1  T1  s2  S  T2  Tf  tok s2  T2.
112
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
113 114 115 116 117
  remember (s1,T1) as sT1 eqn:HsT1; remember (s2,T2) as sT2 eqn:HsT2.
  intros Hsteps; revert s1 T1 HsT1 s2 T2 HsT2.
  induction Hsteps as [?|? [s2 T2] ? Hstep Hsteps IH];
     intros s1 T1 HsT1 s2' T2' ?????; simplify_eq; first done.
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); eauto.
118
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
119 120

(** ** Properties of the closure operators *)
121
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
Proof. constructor. Qed.
123
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
124
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
125 126
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
Lemma closed_up_set S T : ( s, s  S  tok s  T)  closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
Proof.
129
  intros HS; unfold up_set; split.
130
  - intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
131
    specialize (HS s' Hs'); clear Hs' S.
132
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
134
  - intros s1 s2; rewrite /up; set_unfold; intros (s&?&?) ?; exists s.
Robbert Krebbers's avatar
Robbert Krebbers committed
135 136
    split; [eapply rtc_r|]; eauto.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
137
Lemma closed_up s T : tok s  T  closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
138
Proof.
139
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
140
  apply closed_up_set; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
Qed.
142 143
Lemma closed_up_set_empty S : closed (up_set S ) .
Proof. eauto using closed_up_set with sts. Qed.
144
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
145
Proof. eauto using closed_up with sts. Qed.
146
Lemma up_set_empty S T : up_set S T    S  .
Robbert Krebbers's avatar
Robbert Krebbers committed
147 148
Proof. move:(subseteq_up_set S T). set_solver. Qed.
Lemma up_set_non_empty S T : S    up_set S T  .
149
Proof. by move=>? /up_set_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
150 151
Lemma up_non_empty s T : up s T  .
Proof. eapply non_empty_inhabited, elem_of_up. Qed.
152
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
Proof.
154 155
  intros ?; apply collection_equiv_spec; split; auto using subseteq_up_set.
  intros s; unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
Robbert Krebbers's avatar
Robbert Krebbers committed
156 157
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
158 159 160 161 162 163 164
Lemma up_subseteq s T S : closed S T  s  S  sts.up s T  S.
Proof. move=> ?? s' ?. eauto using closed_steps. Qed.
Lemma up_set_subseteq S1 T S2 : closed S2 T  S1  S2  sts.up_set S1 T  S2.
Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed.
End sts.

Notation steps := (rtc step).
Ralf Jung's avatar
Ralf Jung committed
165
Notation frame_steps T := (rtc (frame_step T)).
Robbert Krebbers's avatar
Robbert Krebbers committed
166 167 168 169 170 171 172 173

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.
174
End sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
175

176 177 178 179
Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
180
Section sts_dra.
181 182
Context (sts : stsT).
Import sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
183 184 185 186 187 188
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
189 190
Existing Instance sts_equiv.
Instance sts_valid : Valid (car sts) := λ x,
191
  match x with
Robbert Krebbers's avatar
Robbert Krebbers committed
192
  | auth s T => tok s  T
Robbert Krebbers's avatar
Robbert Krebbers committed
193 194
  | frag S' T => closed S' T  S'  
  end.
195
Instance sts_core : Core (car sts) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
196 197 198 199 200 201
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204
     S1  S2    T1  T2  frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 : s  S  T1  T2  auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 : s  S  T1  T2  frag S T1  auth s T2.
205 206
Existing Instance sts_disjoint.
Instance sts_op : Op (car sts) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
207 208 209 210 211 212 213
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
214 215 216 217
Hint Extern 50 (equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (¬equiv (A:=set _) _ _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Hint Extern 50 (_  _) => set_solver : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
218 219
Hint Extern 50 (_  _) => set_solver : sts.

220 221 222 223 224 225
Global Instance auth_proper s : Proper (() ==> ()) (@auth sts s).
Proof. by constructor. Qed.
Global Instance frag_proper : Proper (() ==> () ==> ()) (@frag sts).
Proof. by constructor. Qed.

Instance sts_equivalence: Equivalence (() : relation (car sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227
Proof.
  split.
228 229
  - by intros []; constructor.
  - by destruct 1; constructor.
230
  - destruct 1; inversion_clear 1; constructor; etrans; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
231
Qed.
232
Lemma sts_dra_mixin : DRAMixin (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
233 234
Proof.
  split.
235 236 237 238 239
  - apply _.
  - by do 2 destruct 1; constructor; setoid_subst.
  - by destruct 1; constructor; setoid_subst.
  - by destruct 1; simpl; intros ?; setoid_subst.
  - by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
240
  - destruct 3; simpl in *; destruct_and?; eauto using closed_op;
241
      match goal with H : closed _ _ |- _ => destruct H end; set_solver.
242
  - intros []; simpl; intros; destruct_and?; split;
Robbert Krebbers's avatar
Robbert Krebbers committed
243
      eauto using closed_up, up_non_empty, closed_up_set, up_set_empty with sts.
244 245 246 247 248 249 250 251
  - intros [] [] []; constructor; rewrite ?assoc; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 4; inversion_clear 1; constructor; auto with sts.
  - destruct 1; constructor; auto with sts.
  - destruct 3; constructor; auto with sts.
  - intros [|S T]; constructor; auto using elem_of_up with sts.
  - intros [|S T]; constructor; auto with sts.
  - intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
252
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
253
    + rewrite (up_closed (up_set _ _)); eauto using closed_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
254 255 256
  - intros x y. exists (core (x  y))=> ?? Hxy; split_and?.
    + destruct Hxy; constructor; unfold up_set; set_solver.
    + destruct Hxy; simpl; split_and?;
Robbert Krebbers's avatar
Robbert Krebbers committed
257 258
        auto using closed_up_set_empty, closed_up_empty, up_non_empty; [].
      apply up_set_non_empty. set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
    + destruct Hxy; constructor;
260
        repeat match goal with
261 262 263 264
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
265
        end; auto with sts.
266
Qed.
267 268
Canonical Structure stsDR : draT := DRAT (car sts) sts_dra_mixin.
End sts_dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
269 270 271

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
272 273
Notation stsC sts := (validityC (stsDR sts)).
Notation stsR sts := (validityR (stsDR sts)).
Robbert Krebbers's avatar
Robbert Krebbers committed
274 275 276

Section sts_definitions.
  Context {sts : stsT}.
277
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
278
    to_validity (sts.auth s T).
279
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsR sts :=
280
    to_validity (sts.frag S T).
281
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsR sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
282 283 284 285 286 287 288 289 290 291 292 293
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.
294
Arguments dra_valid _ !_/.
295

Robbert Krebbers's avatar
Robbert Krebbers committed
296 297
(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
298
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
299
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
300
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
301
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
302
Proof. solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
303

Robbert Krebbers's avatar
Robbert Krebbers committed
304
(** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T.
306
Proof. done. Qed.
307
Lemma sts_frag_valid S T :  sts_frag S T  closed S T  S  .
308
Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Lemma sts_frag_up_valid s T : tok s  T   sts_frag_up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
Proof. intros. by apply sts_frag_valid; auto using closed_up, up_non_empty. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
311

Robbert Krebbers's avatar
Robbert Krebbers committed
312 313
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
314
Proof. by intros (?&?&Hdisj); inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
315

Robbert Krebbers's avatar
Robbert Krebbers committed
316 317 318 319
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
320
  intros; split; [split|constructor; set_solver]; simpl.
321
  - intros (?&?&?); by apply closed_disjoint with S.
322
  - intros; split_and?; last constructor; set_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
323 324
Qed.
Lemma sts_op_auth_frag_up s T :
325 326 327
  sts_auth s   sts_frag_up s T  sts_auth s T.
Proof.
  intros; split; [split|constructor; set_solver]; simpl.
328
  - intros (?&[??]&?). by apply closed_disjoint with (up s T), elem_of_up.
329 330 331
  - intros; split_and?.
    + set_solver+.
    + by apply closed_up.
Robbert Krebbers's avatar
Robbert Krebbers committed
332
    + apply up_non_empty.
333 334
    + constructor; last set_solver. apply elem_of_up.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
335

Ralf Jung's avatar
Ralf Jung committed
336
Lemma sts_op_frag S1 S2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  T1  T2  sts.closed S1 T1  sts.closed S2 T2 
Ralf Jung's avatar
Ralf Jung committed
338 339
  sts_frag (S1  S2) (T1  T2)  sts_frag S1 T1  sts_frag S2 T2.
Proof.
340 341
  intros HT HS1 HS2. rewrite /sts_frag -to_validity_op //.
  move=>/=[??]. split_and!; [auto; set_solver..|by constructor].
Ralf Jung's avatar
Ralf Jung committed
342 343
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
344 345
(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
346
  steps (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
Proof.
348
  intros ?; apply validity_update.
349
  inversion 3 as [|? S ? Tf|]; simplify_eq/=; destruct_and?.
350
  destruct (steps_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto; [].
351
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
352
Qed.
Ralf Jung's avatar
Ralf Jung committed
353

354 355
Lemma sts_update_frag S1 S2 T1 T2 :
  closed S2 T2  S1  S2  T2  T1  sts_frag S1 T1 ~~> sts_frag S2 T2.
356
Proof.
357
  rewrite /sts_frag=> ? HS HT. apply validity_update.
358
  inversion 3 as [|? S ? Tf|]; simplify_eq/=.
359 360
  - split_and!; first done; first set_solver. constructor; set_solver.
  - split_and!; first done; first set_solver. constructor; set_solver.
361 362
Qed.

363 364
Lemma sts_update_frag_up s1 S2 T1 T2 :
  closed S2 T2  s1  S2  T2  T1  sts_frag_up s1 T1 ~~> sts_frag S2 T2.
Ralf Jung's avatar
Ralf Jung committed
365
Proof.
366 367
  intros ? ? HT; apply sts_update_frag; [intros; eauto using closed_steps..].
  rewrite <-HT. eapply up_subseteq; done.
Robbert Krebbers's avatar
Robbert Krebbers committed
368 369
Qed.

370 371
Lemma sts_up_set_intersection S1 Sf Tf :
  closed Sf Tf  S1  Sf  S1  up_set (S1  Sf) Tf.
372 373
Proof.
  intros Hclf. apply (anti_symm ()).
374 375
  - move=>s [HS1 HSf]. split. by apply HS1. by apply subseteq_up_set.
  - move=>s [HS1 [s' [/elem_of_mkSet Hsup Hs']]]. split; first done.
376
    eapply closed_steps, Hsup; first done. set_solver +Hs'.
377 378
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
379
(** Inclusion *)
380 381 382
(* This is surprisingly different from to_validity_included. I am not sure
   whether this is because to_validity_included is non-canonical, or this
   one here is non-canonical - but I suspect both. *)
383
(* TODO: These have to be proven again. *)
384
(*
Robbert Krebbers's avatar
Robbert Krebbers committed
385
Lemma sts_frag_included S1 S2 T1 T2 :
386 387
  closed S2 T2 → S2 ≢ ∅ →
  (sts_frag S1 T1 ≼ sts_frag S2 T2) ↔
Robbert Krebbers's avatar
Robbert Krebbers committed
388
  (closed S1 T1 ∧ S1 ≢ ∅ ∧ ∃ Tf, T2 ≡ T1 ∪ Tf ∧ T1 ⊥ Tf ∧
389 390
                                 S2 ≡ S1 ∩ up_set S2 Tf).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
  intros ??; split.
392
  - intros [[???] ?].
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  destruct (to_validity_included (sts_dra.car sts) (sts_dra.frag S1 T1) (sts_dra.frag S2 T2)) as [Hfincl Htoincl].
  intros Hcl2 HS2ne. split.
  - intros Hincl. destruct Hfincl as ((Hcl1 & ?) & (z & EQ & Hval & Hdisj)).
    { split; last done. split; done. }
    clear Htoincl. split_and!; try done; [].
    destruct z as [sf Tf|Sf Tf].
    { exfalso. inversion_clear EQ. }
    exists Tf. inversion_clear EQ as [|? ? ? ? HT2 HS2].
    inversion_clear Hdisj as [? ? ? ? _ HTdisj | |]. split_and!; [done..|].
    rewrite HS2. apply up_set_intersection. apply Hval.
  - intros (Hcl & Hne & (Tf & HT & HTdisj & HS)). destruct Htoincl as ((Hcl' & ?) & (z & EQ)); last first.
    { exists z. exact EQ. } clear Hfincl.
    split; first (split; done). exists (sts_dra.frag (up_set S2 Tf) Tf). split_and!.
    + constructor; done.
    + simpl. split.
      * apply closed_up_set. move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
        set_solver +HT.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
      * by apply up_set_non_empty.
411
    + constructor; last done. by rewrite -HS.
412 413
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
414
Lemma sts_frag_included' S1 S2 T :
415
  closed S2 T → closed S1 T → S2 ≢ ∅ → S1 ≢ ∅ → S2 ≡ S1 ∩ up_set S2 ∅ →
Robbert Krebbers's avatar
Robbert Krebbers committed
416
  sts_frag S1 T ≼ sts_frag S2 T.
417
Proof.
418 419
  intros. apply sts_frag_included; split_and?; auto.
  exists ∅; split_and?; done || set_solver+.
420
Qed. *)
421
End stsRA.
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

(** STSs without tokens: Some stuff is simpler *)
Module sts_notok.
Structure stsT := STS {
  state : Type;
  prim_step : relation state;
}.
Arguments STS {_} _.
Arguments prim_step {_} _ _.
Notation states sts := (set (state sts)).

Canonical sts_notok (sts : stsT) : sts.stsT :=
  sts.STS (token:=Empty_set) (@prim_step sts) (λ _, ).

Section sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Notation prim_steps := (rtc prim_step).

Lemma sts_step s1 s2 :
  prim_step s1 s2  sts.step (s1, ) (s2, ).
Proof.
  intros. split; set_solver.
Qed.

Lemma sts_steps s1 s2 :
  prim_steps s1 s2  sts.steps (s1, ) (s2, ).
Proof.
  induction 1; eauto using sts_step, rtc_refl, rtc_l.
Qed.

Lemma frame_prim_step T s1 s2 :
  sts.frame_step T s1 s2  prim_step s1 s2.
Proof.
  inversion 1 as [??? Hstep]. inversion_clear Hstep. done.
Qed.

Lemma prim_frame_step T s1 s2 :
  prim_step s1 s2  sts.frame_step T s1 s2.
Proof.
  intros Hstep. apply sts.Frame_step with  ; first set_solver.
  by apply sts_step.
Qed.

Lemma mk_closed S :
  ( s1 s2, s1  S  prim_step s1 s2  s2  S)  sts.closed S .
Proof.
  intros ?. constructor; first by set_solver.
  intros ????. eauto using frame_prim_step.
Qed.

End sts.
Notation steps := (rtc prim_step).
End sts_notok.

Coercion sts_notok.sts_notok : sts_notok.stsT >-> sts.stsT.
Notation sts_notokT := sts_notok.stsT.
Notation STS_NoTok := sts_notok.STS.

Section sts_notokRA.
Import sts_notok.
Context {sts : sts_notokT}.
Implicit Types s : state sts.
Implicit Types S : states sts.

Lemma sts_notok_update_auth s1 s2 :
  rtc prim_step s1 s2  sts_auth s1  ~~> sts_auth s2 .
Proof.
  intros. by apply sts_update_auth, sts_steps.
Qed.

End sts_notokRA.