sts.v 9.92 KB
Newer Older
1
From prelude Require Export sets.
2 3
From algebra Require Export cmra.
From algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Local Arguments unit _ _ !_ /.

8 9 10
Inductive sts {A B} (R : relation A) (tok : A  set B) :=
  | auth : A  set B  sts R tok
  | frag : set A  set B  sts R tok.
11 12
Arguments auth {_ _ _ _} _ _.
Arguments frag {_ _ _ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
13

14
Module sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
15
Section sts_core.
Robbert Krebbers's avatar
Robbert Krebbers committed
16 17
Context {A B : Type} (R : relation A) (tok : A  set B).
Infix "≼" := dra_included.
Robbert Krebbers's avatar
Robbert Krebbers committed
18

19
Inductive sts_equiv : Equiv (sts R tok) :=
20 21
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
22
Global Existing Instance sts_equiv.
Robbert Krebbers's avatar
Robbert Krebbers committed
23
Inductive step : relation (A * set B) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  | Step s1 s2 T1 T2 :
25
     R s1 s2  tok s1  T1    tok s2  T2    tok s1  T1  tok s2  T2 
Robbert Krebbers's avatar
Robbert Krebbers committed
26 27
     step (s1,T1) (s2,T2).
Hint Resolve Step.
Robbert Krebbers's avatar
Robbert Krebbers committed
28
Inductive frame_step (T : set B) (s1 s2 : A) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
29
  | Frame_step T1 T2 :
30
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Hint Resolve Frame_step.
32
Record closed (S : set A) (T : set B) : Prop := Closed {
33
  closed_ne : S  ;
34
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36 37
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Lemma closed_steps S T s1 s2 :
38
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
39
Proof. induction 3; eauto using closed_step. Qed.
40
Global Instance sts_valid : Valid (sts R tok) := λ x,
41 42 43
  match x with auth s T => tok s  T   | frag S' T => closed S' T end.
Definition up (s : A) (T : set B) : set A := mkSet (rtc (frame_step T) s).
Definition up_set (S : set A) (T : set B) : set A := S = λ s, up s T.
44
Global Instance sts_unit : Unit (sts R tok) := λ x,
Robbert Krebbers's avatar
Robbert Krebbers committed
45
  match x with
46
  | frag S' _ => frag (up_set S'  )  | auth s _ => frag (up s ) 
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  end.
48
Inductive sts_disjoint : Disjoint (sts R tok) :=
49 50
  | frag_frag_disjoint S1 S2 T1 T2 :
     S1  S2    T1  T2    frag S1 T1  frag S2 T2
51 52
  | auth_frag_disjoint s S T1 T2 : s  S  T1  T2    auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 : s  S  T1  T2    frag S T1  auth s T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
53
Global Existing Instance sts_disjoint.
54
Global Instance sts_op : Op (sts R tok) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58 59 60
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2) (* never happens *)
  end.
61
Global Instance sts_minus : Minus (sts R tok) := λ x1 x2,
Robbert Krebbers's avatar
Robbert Krebbers committed
62
  match x1, x2 with
63
  | frag S1 T1, frag S2 T2 => frag (up_set S1 (T1  T2)) (T1  T2)
Robbert Krebbers's avatar
Robbert Krebbers committed
64 65
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T2, auth s T1 => auth s (T1  T2) (* never happens *)
66
  | auth s T1, auth _ T2 => frag (up s (T1  T2)) (T1  T2)
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68
  end.

69 70 71 72
Hint Extern 10 (equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (¬(equiv (A:=set _) _ _)) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
73
Instance: Equivalence (() : relation (sts R tok)).
Robbert Krebbers's avatar
Robbert Krebbers committed
74 75 76 77 78 79
Proof.
  split.
  * by intros []; constructor.
  * by destruct 1; constructor.
  * destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
Qed.
80 81 82
Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> impl) frame_step.
Proof. intros ?? HT ?? <- ?? <-; destruct 1; econstructor; eauto with sts. Qed.
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Proof.
84
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
85
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
86
Qed.
87 88
Instance closed_proper : Proper (() ==> () ==> iff) closed.
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
89
Lemma closed_op T1 T2 S1 S2 :
90 91
  closed S1 T1  closed S2 T2 
  T1  T2    S1  S2    closed (S1  S2) (T1  T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
92
Proof.
93
  intros [_ ? Hstep1] [_ ? Hstep2] ?; split; [done|solve_elem_of|].
94 95 96
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
  * apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  * apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
97
Qed.
98
Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
99
Proof.
100
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
  eapply rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Qed.
104 105
Instance up_proper : Proper ((=) ==> () ==> ()) up.
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
106
Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
107 108 109 110 111
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set HS.
  f_equiv=>s1 s2 Hs. by rewrite Hs HT.
Qed.
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
Proof. constructor. Qed.
113
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
115
Lemma closed_up_set S T :
116
  ( s, s  S  tok s  T  )  S    closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
117
Proof.
118
  intros HS Hne; unfold up_set; split.
119
  * assert ( s, s  up s T) by eauto using elem_of_up. solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
  * intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
121
    specialize (HS s' Hs'); clear Hs' Hne S.
Robbert Krebbers's avatar
Robbert Krebbers committed
122 123 124 125 126
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; auto.
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
  * intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s.
    split; [eapply rtc_r|]; eauto.
Qed.
127
Lemma closed_up_set_empty S : S    closed (up_set S ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
128
Proof. eauto using closed_up_set with sts. Qed.
129
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
Proof.
131
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
132
  apply closed_up_set; solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
133
Qed.
134
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
135
Proof. eauto using closed_up with sts. Qed.
136
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
137
Proof.
138
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
139 140 141
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
142
Global Instance sts_dra : DRA (sts R tok).
Robbert Krebbers's avatar
Robbert Krebbers committed
143 144 145 146 147 148 149 150
Proof.
  split.
  * apply _.
  * by do 2 destruct 1; constructor; setoid_subst.
  * by destruct 1; constructor; setoid_subst.
  * by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
  * by do 2 destruct 1; constructor; setoid_subst.
  * assert ( T T' S s,
151
      closed S T  s  S  tok s  T'    tok s  (T  T')  ).
152
    { intros S T T' s [??]; solve_elem_of. }
Robbert Krebbers's avatar
Robbert Krebbers committed
153
    destruct 3; simpl in *; auto using closed_op with sts.
154
  * intros []; simpl; eauto using closed_up, closed_up_set, closed_ne with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156
  * intros ???? (z&Hy&?&Hxz); destruct Hxz; inversion Hy;clear Hy; setoid_subst;
      rewrite ?disjoint_union_difference; auto using closed_up with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
157
    eapply closed_up_set; eauto 2 using closed_disjoint with sts.
158
  * intros [] [] []; constructor; rewrite ?assoc; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
159 160 161 162
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 1; constructor; auto with sts.
  * destruct 3; constructor; auto with sts.
163
  * intros [|S T]; constructor; auto using elem_of_up with sts.
164
    assert (S  up_set S   S  ) by eauto using subseteq_up_set, closed_ne.
165
    solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
166
  * intros [|S T]; constructor; auto with sts.
167
    assert (S  up_set S ); auto using subseteq_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
168
  * intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
169 170 171
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
    + rewrite (up_closed (up_set _ _));
        eauto using closed_up_set, closed_ne with sts.
172
  * intros x y ?? (z&Hy&?&Hxz); exists (unit (x  y)); split_ands.
173
    + destruct Hxz;inversion_clear Hy;constructor;unfold up_set; solve_elem_of.
174 175 176 177
    + destruct Hxz; inversion_clear Hy; simpl;
        auto using closed_up_set_empty, closed_up_empty with sts.
    + destruct Hxz; inversion_clear Hy; constructor;
        repeat match goal with
178 179 180 181
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
182 183 184
        end; auto with sts.
  * intros x y ?? (z&Hy&_&Hxz); destruct Hxz; inversion_clear Hy; constructor;
      repeat match goal with
185 186 187 188
      | |- context [ up_set ?S ?T ] =>
         unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
      | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
189
      end; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191
  * intros x y ?? (z&Hy&?&Hxz); destruct Hxz as [S1 S2 T1 T2| |];
      inversion Hy; clear Hy; constructor; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
192
      rewrite ?disjoint_union_difference; auto.
193
    split; [|apply intersection_greatest; auto using subseteq_up_set with sts].
Robbert Krebbers's avatar
Robbert Krebbers committed
194 195 196 197
    apply intersection_greatest; [auto with sts|].
    intros s2; rewrite elem_of_intersection.
    unfold up_set; rewrite elem_of_bind; intros (?&s1&?&?&?).
    apply closed_steps with T2 s1; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
200
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
201
  s2  S  T2  Tf    tok s2  T2  .
Robbert Krebbers's avatar
Robbert Krebbers committed
202
Proof.
203
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [?? Hstep]??; split_ands; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
204
  * eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
205
  * solve_elem_of -Hstep Hs1 Hs2.
Robbert Krebbers's avatar
Robbert Krebbers committed
206 207 208 209
Qed.
End sts_core.
End sts.

210
Section stsRA.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
Context {A B : Type} (R : relation A) (tok : A  set B).
Robbert Krebbers's avatar
Robbert Krebbers committed
212

213 214 215
Canonical Structure stsRA := validityRA (sts R tok).
Definition sts_auth (s : A) (T : set B) : stsRA := to_validity (auth s T).
Definition sts_frag (S : set A) (T : set B) : stsRA := to_validity (frag S T).
Robbert Krebbers's avatar
Robbert Krebbers committed
216
Lemma sts_update s1 s2 T1 T2 :
217
  sts.step R tok (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
218
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
219
  intros ?; apply validity_update; inversion 3 as [|? S ? Tf|]; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
220
  destruct (sts.step_closed R tok s1 s2 T1 T2 S Tf) as (?&?&?); auto.
221
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
222
Qed.
223
End stsRA.