cmra.v 49.7 KB
 Robbert Krebbers committed Mar 10, 2016 1 ``````From iris.algebra Require Export cofe. `````` Robbert Krebbers committed Feb 01, 2016 2 `````` `````` Robbert Krebbers committed May 28, 2016 3 4 ``````Class PCore (A : Type) := pcore : A → option A. Instance: Params (@pcore) 2. `````` Robbert Krebbers committed Feb 01, 2016 5 6 7 8 9 10 11 12 13 `````` Class Op (A : Type) := op : A → A → A. Instance: Params (@op) 2. Infix "⋅" := op (at level 50, left associativity) : C_scope. Notation "(⋅)" := op (only parsing) : C_scope. Definition included `{Equiv A, Op A} (x y : A) := ∃ z, y ≡ x ⋅ z. Infix "≼" := included (at level 70) : C_scope. Notation "(≼)" := included (only parsing) : C_scope. `````` Robbert Krebbers committed Feb 13, 2016 14 ``````Hint Extern 0 (_ ≼ _) => reflexivity. `````` Robbert Krebbers committed Feb 01, 2016 15 16 ``````Instance: Params (@included) 3. `````` Robbert Krebbers committed Nov 11, 2015 17 18 ``````Class ValidN (A : Type) := validN : nat → A → Prop. Instance: Params (@validN) 3. `````` Robbert Krebbers committed Feb 11, 2016 19 ``````Notation "✓{ n } x" := (validN n x) `````` Robbert Krebbers committed Feb 19, 2016 20 `````` (at level 20, n at next level, format "✓{ n } x"). `````` Robbert Krebbers committed Nov 11, 2015 21 `````` `````` Robbert Krebbers committed Feb 01, 2016 22 23 ``````Class Valid (A : Type) := valid : A → Prop. Instance: Params (@valid) 2. `````` Robbert Krebbers committed Feb 11, 2016 24 ``````Notation "✓ x" := (valid x) (at level 20) : C_scope. `````` Robbert Krebbers committed Feb 01, 2016 25 `````` `````` Ralf Jung committed Feb 10, 2016 26 ``````Definition includedN `{Dist A, Op A} (n : nat) (x y : A) := ∃ z, y ≡{n}≡ x ⋅ z. `````` Robbert Krebbers committed Nov 20, 2015 27 ``````Notation "x ≼{ n } y" := (includedN n x y) `````` Robbert Krebbers committed Feb 19, 2016 28 `````` (at level 70, n at next level, format "x ≼{ n } y") : C_scope. `````` Robbert Krebbers committed Nov 20, 2015 29 ``````Instance: Params (@includedN) 4. `````` Robbert Krebbers committed Feb 13, 2016 30 ``````Hint Extern 0 (_ ≼{_} _) => reflexivity. `````` Robbert Krebbers committed Nov 20, 2015 31 `````` `````` Robbert Krebbers committed May 28, 2016 32 ``````Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := { `````` Robbert Krebbers committed Nov 11, 2015 33 `````` (* setoids *) `````` Robbert Krebbers committed Jan 14, 2016 34 `````` mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x); `````` Robbert Krebbers committed May 28, 2016 35 36 `````` mixin_cmra_pcore_ne n x y cx : x ≡{n}≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡{n}≡ cy; `````` Robbert Krebbers committed Feb 11, 2016 37 `````` mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n); `````` Robbert Krebbers committed Nov 11, 2015 38 `````` (* valid *) `````` Robbert Krebbers committed Feb 24, 2016 39 `````` mixin_cmra_valid_validN x : ✓ x ↔ ∀ n, ✓{n} x; `````` Robbert Krebbers committed Feb 01, 2016 40 `````` mixin_cmra_validN_S n x : ✓{S n} x → ✓{n} x; `````` Robbert Krebbers committed Nov 11, 2015 41 `````` (* monoid *) `````` Robbert Krebbers committed Feb 11, 2016 42 43 `````` mixin_cmra_assoc : Assoc (≡) (⋅); mixin_cmra_comm : Comm (≡) (⋅); `````` Robbert Krebbers committed May 28, 2016 44 45 46 47 `````` mixin_cmra_pcore_l x cx : pcore x = Some cx → cx ⋅ x ≡ x; mixin_cmra_pcore_idemp x cx : pcore x = Some cx → pcore cx ≡ Some cx; mixin_cmra_pcore_preserving x y cx : x ≼ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy; `````` Robbert Krebbers committed Feb 01, 2016 48 `````` mixin_cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x; `````` Robbert Krebbers committed Feb 24, 2016 49 50 51 `````` mixin_cmra_extend n x y1 y2 : ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → { z | x ≡ z.1 ⋅ z.2 ∧ z.1 ≡{n}≡ y1 ∧ z.2 ≡{n}≡ y2 } `````` Robbert Krebbers committed Nov 11, 2015 52 ``````}. `````` Robbert Krebbers committed Nov 22, 2015 53 `````` `````` Robbert Krebbers committed Nov 11, 2015 54 55 56 57 58 59 ``````(** Bundeled version *) Structure cmraT := CMRAT { cmra_car :> Type; cmra_equiv : Equiv cmra_car; cmra_dist : Dist cmra_car; cmra_compl : Compl cmra_car; `````` Robbert Krebbers committed May 28, 2016 60 `````` cmra_pcore : PCore cmra_car; `````` Robbert Krebbers committed Nov 11, 2015 61 `````` cmra_op : Op cmra_car; `````` Robbert Krebbers committed Feb 24, 2016 62 `````` cmra_valid : Valid cmra_car; `````` Robbert Krebbers committed Nov 11, 2015 63 `````` cmra_validN : ValidN cmra_car; `````` Robbert Krebbers committed Jan 14, 2016 64 `````` cmra_cofe_mixin : CofeMixin cmra_car; `````` Robbert Krebbers committed Feb 24, 2016 65 `````` cmra_mixin : CMRAMixin cmra_car `````` Robbert Krebbers committed Nov 11, 2015 66 ``````}. `````` Robbert Krebbers committed May 25, 2016 67 ``````Arguments CMRAT _ {_ _ _ _ _ _ _} _ _. `````` Robbert Krebbers committed Jan 14, 2016 68 69 70 71 ``````Arguments cmra_car : simpl never. Arguments cmra_equiv : simpl never. Arguments cmra_dist : simpl never. Arguments cmra_compl : simpl never. `````` Robbert Krebbers committed May 28, 2016 72 ``````Arguments cmra_pcore : simpl never. `````` Robbert Krebbers committed Jan 14, 2016 73 ``````Arguments cmra_op : simpl never. `````` Robbert Krebbers committed Feb 24, 2016 74 ``````Arguments cmra_valid : simpl never. `````` Robbert Krebbers committed Jan 14, 2016 75 76 77 ``````Arguments cmra_validN : simpl never. Arguments cmra_cofe_mixin : simpl never. Arguments cmra_mixin : simpl never. `````` Robbert Krebbers committed Nov 11, 2015 78 ``````Add Printing Constructor cmraT. `````` Robbert Krebbers committed May 28, 2016 79 ``````Existing Instances cmra_pcore cmra_op cmra_valid cmra_validN. `````` Robbert Krebbers committed May 25, 2016 80 ``````Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A). `````` Robbert Krebbers committed Nov 11, 2015 81 82 ``````Canonical Structure cmra_cofeC. `````` Robbert Krebbers committed Jan 14, 2016 83 84 85 86 87 88 ``````(** Lifting properties from the mixin *) Section cmra_mixin. Context {A : cmraT}. Implicit Types x y : A. Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x). Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed May 28, 2016 89 90 91 `````` Lemma cmra_pcore_ne n x y cx : x ≡{n}≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡{n}≡ cy. Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed Feb 01, 2016 92 93 `````` Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n). Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed Feb 24, 2016 94 95 `````` Lemma cmra_valid_validN x : ✓ x ↔ ∀ n, ✓{n} x. Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed Feb 01, 2016 96 97 `````` Lemma cmra_validN_S n x : ✓{S n} x → ✓{n} x. Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed Feb 11, 2016 98 99 100 101 `````` Global Instance cmra_assoc : Assoc (≡) (@op A _). Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed. Global Instance cmra_comm : Comm (≡) (@op A _). Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed May 28, 2016 102 103 104 105 106 107 108 `````` Lemma cmra_pcore_l x cx : pcore x = Some cx → cx ⋅ x ≡ x. Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed. Lemma cmra_pcore_idemp x cx : pcore x = Some cx → pcore cx ≡ Some cx. Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed. Lemma cmra_pcore_preserving x y cx : x ≼ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy. Proof. apply (mixin_cmra_pcore_preserving _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed Feb 01, 2016 109 110 `````` Lemma cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x. Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed Feb 24, 2016 111 `````` Lemma cmra_extend n x y1 y2 : `````` Ralf Jung committed Feb 10, 2016 112 113 `````` ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → { z | x ≡ z.1 ⋅ z.2 ∧ z.1 ≡{n}≡ y1 ∧ z.2 ≡{n}≡ y2 }. `````` Robbert Krebbers committed Feb 24, 2016 114 `````` Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed. `````` Robbert Krebbers committed Jan 14, 2016 115 116 ``````End cmra_mixin. `````` Robbert Krebbers committed May 28, 2016 117 118 119 120 121 122 123 124 ``````Definition opM {A : cmraT} (x : A) (my : option A) := match my with Some y => x ⋅ y | None => x end. Infix "⋅?" := opM (at level 50, left associativity) : C_scope. (** * Persistent elements *) Class Persistent {A : cmraT} (x : A) := persistent : pcore x ≡ Some x. Arguments persistent {_} _ {_}. `````` Jacques-Henri Jourdan committed May 31, 2016 125 126 127 128 129 ``````(** * Exclusive elements (i.e., elements that cannot have a frame). *) Class Exclusive {A : cmraT} (x : A) := exclusiveN_r : ∀ n y, ✓{n} (x ⋅ y) → False. Arguments exclusiveN_r {_} _ {_} _ _ _. `````` Robbert Krebbers committed May 28, 2016 130 131 132 133 134 135 136 137 138 139 140 ``````(** * CMRAs whose core is total *) (** The function [core] may return a dummy when used on CMRAs without total core. *) Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x). Class Core (A : Type) := core : A → A. Instance: Params (@core) 2. Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x). Arguments core' _ _ _ /. `````` Ralf Jung committed Mar 08, 2016 141 ``````(** * CMRAs with a unit element *) `````` Robbert Krebbers committed Feb 01, 2016 142 ``````(** We use the notation ∅ because for most instances (maps, sets, etc) the `````` Ralf Jung committed Mar 08, 2016 143 ```````empty' element is the unit. *) `````` Robbert Krebbers committed May 28, 2016 144 ``````Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := { `````` Robbert Krebbers committed May 27, 2016 145 146 `````` mixin_ucmra_unit_valid : ✓ ∅; mixin_ucmra_unit_left_id : LeftId (≡) ∅ (⋅); `````` Robbert Krebbers committed May 28, 2016 147 148 `````` mixin_ucmra_unit_timeless : Timeless ∅; mixin_ucmra_pcore_unit : pcore ∅ ≡ Some ∅ `````` Robbert Krebbers committed Feb 01, 2016 149 ``````}. `````` Robbert Krebbers committed May 27, 2016 150 151 152 153 154 155 `````` Structure ucmraT := UCMRAT { ucmra_car :> Type; ucmra_equiv : Equiv ucmra_car; ucmra_dist : Dist ucmra_car; ucmra_compl : Compl ucmra_car; `````` Robbert Krebbers committed May 28, 2016 156 `````` ucmra_pcore : PCore ucmra_car; `````` Robbert Krebbers committed May 27, 2016 157 158 159 160 161 162 163 164 165 166 167 168 169 `````` ucmra_op : Op ucmra_car; ucmra_valid : Valid ucmra_car; ucmra_validN : ValidN ucmra_car; ucmra_empty : Empty ucmra_car; ucmra_cofe_mixin : CofeMixin ucmra_car; ucmra_cmra_mixin : CMRAMixin ucmra_car; ucmra_mixin : UCMRAMixin ucmra_car }. Arguments UCMRAT _ {_ _ _ _ _ _ _ _} _ _ _. Arguments ucmra_car : simpl never. Arguments ucmra_equiv : simpl never. Arguments ucmra_dist : simpl never. Arguments ucmra_compl : simpl never. `````` Robbert Krebbers committed May 28, 2016 170 ``````Arguments ucmra_pcore : simpl never. `````` Robbert Krebbers committed May 27, 2016 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 ``````Arguments ucmra_op : simpl never. Arguments ucmra_valid : simpl never. Arguments ucmra_validN : simpl never. Arguments ucmra_cofe_mixin : simpl never. Arguments ucmra_cmra_mixin : simpl never. Arguments ucmra_mixin : simpl never. Add Printing Constructor ucmraT. Existing Instances ucmra_empty. Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A). Canonical Structure ucmra_cofeC. Coercion ucmra_cmraR (A : ucmraT) : cmraT := CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A). Canonical Structure ucmra_cmraR. (** Lifting properties from the mixin *) Section ucmra_mixin. Context {A : ucmraT}. Implicit Types x y : A. Lemma ucmra_unit_valid : ✓ (∅ : A). Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed. Global Instance ucmra_unit_left_id : LeftId (≡) ∅ (@op A _). Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed. Global Instance ucmra_unit_timeless : Timeless (∅ : A). Proof. apply (mixin_ucmra_unit_timeless _ (ucmra_mixin A)). Qed. `````` Robbert Krebbers committed May 28, 2016 195 196 `````` Lemma ucmra_pcore_unit : pcore (∅:A) ≡ Some ∅. Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed. `````` Robbert Krebbers committed May 27, 2016 197 ``````End ucmra_mixin. `````` Robbert Krebbers committed Jan 14, 2016 198 `````` `````` Robbert Krebbers committed Feb 24, 2016 199 ``````(** * Discrete CMRAs *) `````` Robbert Krebbers committed Feb 26, 2016 200 ``````Class CMRADiscrete (A : cmraT) := { `````` Robbert Krebbers committed Feb 24, 2016 201 202 203 204 `````` cmra_discrete :> Discrete A; cmra_discrete_valid (x : A) : ✓{0} x → ✓ x }. `````` Robbert Krebbers committed Jan 16, 2016 205 ``````(** * Morphisms *) `````` Robbert Krebbers committed Jan 14, 2016 206 ``````Class CMRAMonotone {A B : cmraT} (f : A → B) := { `````` Robbert Krebbers committed Feb 26, 2016 207 208 209 `````` cmra_monotone_ne n :> Proper (dist n ==> dist n) f; validN_preserving n x : ✓{n} x → ✓{n} f x; included_preserving x y : x ≼ y → f x ≼ f y `````` Robbert Krebbers committed Jan 14, 2016 210 ``````}. `````` Robbert Krebbers committed Feb 26, 2016 211 212 ``````Arguments validN_preserving {_ _} _ {_} _ _ _. Arguments included_preserving {_ _} _ {_} _ _ _. `````` Robbert Krebbers committed Jan 14, 2016 213 `````` `````` Robbert Krebbers committed Feb 11, 2016 214 ``````(** * Local updates *) `````` Ralf Jung committed Feb 13, 2016 215 216 ``````(** The idea is that lemams taking this class will usually have L explicit, and leave Lv implicit - it will be inferred by the typeclass machinery. *) `````` Ralf Jung committed Feb 11, 2016 217 218 219 ``````Class LocalUpdate {A : cmraT} (Lv : A → Prop) (L : A → A) := { local_update_ne n :> Proper (dist n ==> dist n) L; local_updateN n x y : Lv x → ✓{n} (x ⋅ y) → L (x ⋅ y) ≡{n}≡ L x ⋅ y `````` Robbert Krebbers committed Feb 11, 2016 220 221 222 ``````}. Arguments local_updateN {_ _} _ {_} _ _ _ _ _. `````` Robbert Krebbers committed Feb 01, 2016 223 ``````(** * Frame preserving updates *) `````` Robbert Krebbers committed May 28, 2016 224 225 ``````Definition cmra_updateP {A : cmraT} (x : A) (P : A → Prop) := ∀ n mz, ✓{n} (x ⋅? mz) → ∃ y, P y ∧ ✓{n} (y ⋅? mz). `````` Robbert Krebbers committed Feb 02, 2016 226 ``````Instance: Params (@cmra_updateP) 1. `````` Ralf Jung committed Feb 03, 2016 227 ``````Infix "~~>:" := cmra_updateP (at level 70). `````` Robbert Krebbers committed May 28, 2016 228 229 230 `````` Definition cmra_update {A : cmraT} (x y : A) := ∀ n mz, ✓{n} (x ⋅? mz) → ✓{n} (y ⋅? mz). `````` Ralf Jung committed Feb 03, 2016 231 ``````Infix "~~>" := cmra_update (at level 70). `````` Robbert Krebbers committed Feb 02, 2016 232 ``````Instance: Params (@cmra_update) 1. `````` Robbert Krebbers committed Nov 22, 2015 233 `````` `````` Robbert Krebbers committed Jan 16, 2016 234 ``````(** * Properties **) `````` Robbert Krebbers committed Nov 11, 2015 235 ``````Section cmra. `````` Robbert Krebbers committed Jan 14, 2016 236 ``````Context {A : cmraT}. `````` Robbert Krebbers committed Nov 11, 2015 237 ``````Implicit Types x y z : A. `````` Robbert Krebbers committed Feb 01, 2016 238 ``````Implicit Types xs ys zs : list A. `````` Robbert Krebbers committed Nov 11, 2015 239 `````` `````` Robbert Krebbers committed Feb 01, 2016 240 ``````(** ** Setoids *) `````` Robbert Krebbers committed May 28, 2016 241 242 243 244 245 246 247 248 249 ``````Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _). Proof. intros x y Hxy. destruct (pcore x) as [cx|] eqn:?. { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. } destruct (pcore y) as [cy|] eqn:?; auto. destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto. Qed. Lemma cmra_pcore_proper x y cx : x ≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡ cy. `````` Robbert Krebbers committed Feb 01, 2016 250 ``````Proof. `````` Robbert Krebbers committed May 28, 2016 251 252 253 `````` intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto. exists cy; split; [done|apply equiv_dist=> n]. destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver. `````` Robbert Krebbers committed Feb 01, 2016 254 ``````Qed. `````` Robbert Krebbers committed May 28, 2016 255 256 257 258 ``````Global Instance cmra_pcore_proper' : Proper ((≡) ==> (≡)) (@pcore A _). Proof. apply (ne_proper _). Qed. Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _). Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed. `````` Robbert Krebbers committed Feb 01, 2016 259 260 261 262 263 264 265 266 ``````Global Instance ra_op_proper' : Proper ((≡) ==> (≡) ==> (≡)) (@op A _). Proof. apply (ne_proper_2 _). Qed. Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1. Proof. by split; apply cmra_validN_ne. Qed. Global Instance cmra_validN_proper : Proper ((≡) ==> iff) (@validN A _ n) | 1. Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed. Global Instance cmra_valid_proper : Proper ((≡) ==> iff) (@valid A _). `````` Robbert Krebbers committed Feb 24, 2016 267 268 269 270 ``````Proof. intros x y Hxy; rewrite !cmra_valid_validN. by split=> ? n; [rewrite -Hxy|rewrite Hxy]. Qed. `````` Robbert Krebbers committed Feb 01, 2016 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 ``````Global Instance cmra_includedN_ne n : Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1. Proof. intros x x' Hx y y' Hy. by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy]. Qed. Global Instance cmra_includedN_proper n : Proper ((≡) ==> (≡) ==> iff) (@includedN A _ _ n) | 1. Proof. intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy. by rewrite (Hx n) (Hy n). Qed. Global Instance cmra_included_proper : Proper ((≡) ==> (≡) ==> iff) (@included A _ _) | 1. Proof. intros x x' Hx y y' Hy. by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy]. Qed. `````` Robbert Krebbers committed May 28, 2016 289 290 291 292 ``````Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A). Proof. destruct 2; by cofe_subst. Qed. Global Instance cmra_opM_proper : Proper ((≡) ==> (≡) ==> (≡)) (@opM A). Proof. destruct 2; by setoid_subst. Qed. `````` Robbert Krebbers committed Feb 02, 2016 293 294 295 ``````Global Instance cmra_updateP_proper : Proper ((≡) ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A). Proof. `````` Robbert Krebbers committed May 28, 2016 296 297 298 299 300 301 302 `````` rewrite /pointwise_relation /cmra_updateP=> x x' Hx P P' HP; split=> ? n mz; setoid_subst; naive_solver. Qed. Global Instance cmra_update_proper : Proper ((≡) ==> (≡) ==> iff) (@cmra_update A). Proof. rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto. `````` Robbert Krebbers committed Feb 02, 2016 303 ``````Qed. `````` Robbert Krebbers committed Feb 01, 2016 304 `````` `````` Robbert Krebbers committed May 28, 2016 305 306 307 308 ``````(** ** Op *) Lemma cmra_opM_assoc x y mz : (x ⋅ y) ⋅? mz ≡ x ⋅ (y ⋅? mz). Proof. destruct mz; by rewrite /= -?assoc. Qed. `````` Robbert Krebbers committed Feb 01, 2016 309 ``````(** ** Validity *) `````` Robbert Krebbers committed Feb 18, 2016 310 ``````Lemma cmra_validN_le n n' x : ✓{n} x → n' ≤ n → ✓{n'} x. `````` Robbert Krebbers committed Feb 01, 2016 311 312 313 ``````Proof. induction 2; eauto using cmra_validN_S. Qed. Lemma cmra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x. Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed. `````` Robbert Krebbers committed Feb 18, 2016 314 ``````Lemma cmra_validN_op_r n x y : ✓{n} (x ⋅ y) → ✓{n} y. `````` Robbert Krebbers committed Feb 11, 2016 315 ``````Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed. `````` Robbert Krebbers committed Feb 01, 2016 316 317 318 ``````Lemma cmra_valid_op_r x y : ✓ (x ⋅ y) → ✓ y. Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed. `````` Ralf Jung committed Mar 08, 2016 319 ``````(** ** Core *) `````` Robbert Krebbers committed May 28, 2016 320 321 322 323 324 325 326 327 ``````Lemma cmra_pcore_l' x cx : pcore x ≡ Some cx → cx ⋅ x ≡ x. Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed. Lemma cmra_pcore_r x cx : pcore x = Some cx → x ⋅ cx ≡ x. Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. Lemma cmra_pcore_r' x cx : pcore x ≡ Some cx → x ⋅ cx ≡ x. Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. Lemma cmra_pcore_idemp' x cx : pcore x ≡ Some cx → pcore cx ≡ Some cx. Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. `````` Robbert Krebbers committed May 30, 2016 328 329 330 331 ``````Lemma cmra_pcore_dup x cx : pcore x = Some cx → cx ≡ cx ⋅ cx. Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed. Lemma cmra_pcore_dup' x cx : pcore x ≡ Some cx → cx ≡ cx ⋅ cx. Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed. `````` Robbert Krebbers committed May 28, 2016 332 333 334 335 336 337 338 339 ``````Lemma cmra_pcore_validN n x cx : ✓{n} x → pcore x = Some cx → ✓{n} cx. Proof. intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l. Qed. Lemma cmra_pcore_valid x cx : ✓ x → pcore x = Some cx → ✓ cx. Proof. intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l. Qed. `````` Robbert Krebbers committed Feb 01, 2016 340 `````` `````` Robbert Krebbers committed May 30, 2016 341 342 343 344 ``````(** ** Persistent elements *) Lemma persistent_dup x `{!Persistent x} : x ≡ x ⋅ x. Proof. by apply cmra_pcore_dup' with x. Qed. `````` Jacques-Henri Jourdan committed May 31, 2016 345 346 347 348 349 350 351 352 353 ``````(** ** Exclusive elements *) Lemma exclusiveN_l x `{!Exclusive x} : ∀ (n : nat) (y : A), ✓{n} (y ⋅ x) → False. Proof. intros ??. rewrite comm. by apply exclusiveN_r. Qed. Lemma exclusive_r x `{!Exclusive x} : ∀ (y : A), ✓ (x ⋅ y) → False. Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_r _ 0). Qed. Lemma exclusive_l x `{!Exclusive x} : ∀ (y : A), ✓ (y ⋅ x) → False. Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_l _ 0). Qed. `````` Robbert Krebbers committed Feb 01, 2016 354 ``````(** ** Order *) `````` Robbert Krebbers committed Mar 11, 2016 355 356 ``````Lemma cmra_included_includedN n x y : x ≼ y → x ≼{n} y. Proof. intros [z ->]. by exists z. Qed. `````` Robbert Krebbers committed May 28, 2016 357 ``````Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n). `````` Robbert Krebbers committed Feb 01, 2016 358 ``````Proof. `````` Robbert Krebbers committed May 28, 2016 359 `````` intros x y z [z1 Hy] [z2 Hz]; exists (z1 ⋅ z2). by rewrite assoc -Hy -Hz. `````` Robbert Krebbers committed Feb 01, 2016 360 ``````Qed. `````` Robbert Krebbers committed May 28, 2016 361 ``````Global Instance cmra_included_trans: Transitive (@included A _ _). `````` Robbert Krebbers committed Feb 01, 2016 362 ``````Proof. `````` Robbert Krebbers committed May 28, 2016 363 `````` intros x y z [z1 Hy] [z2 Hz]; exists (z1 ⋅ z2). by rewrite assoc -Hy -Hz. `````` Robbert Krebbers committed Feb 01, 2016 364 ``````Qed. `````` Robbert Krebbers committed Feb 18, 2016 365 ``````Lemma cmra_validN_includedN n x y : ✓{n} y → x ≼{n} y → ✓{n} x. `````` Robbert Krebbers committed Feb 01, 2016 366 ``````Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed. `````` Robbert Krebbers committed Feb 18, 2016 367 ``````Lemma cmra_validN_included n x y : ✓{n} y → x ≼ y → ✓{n} x. `````` Robbert Krebbers committed Mar 11, 2016 368 ``````Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed. `````` Robbert Krebbers committed Feb 01, 2016 369 `````` `````` Robbert Krebbers committed Feb 18, 2016 370 ``````Lemma cmra_includedN_S n x y : x ≼{S n} y → x ≼{n} y. `````` Robbert Krebbers committed Feb 01, 2016 371 ``````Proof. by intros [z Hz]; exists z; apply dist_S. Qed. `````` Robbert Krebbers committed Feb 18, 2016 372 ``````Lemma cmra_includedN_le n n' x y : x ≼{n} y → n' ≤ n → x ≼{n'} y. `````` Robbert Krebbers committed Feb 01, 2016 373 374 375 376 377 378 379 ``````Proof. induction 2; auto using cmra_includedN_S. Qed. Lemma cmra_includedN_l n x y : x ≼{n} x ⋅ y. Proof. by exists y. Qed. Lemma cmra_included_l x y : x ≼ x ⋅ y. Proof. by exists y. Qed. Lemma cmra_includedN_r n x y : y ≼{n} x ⋅ y. `````` Robbert Krebbers committed Feb 11, 2016 380 ``````Proof. rewrite (comm op); apply cmra_includedN_l. Qed. `````` Robbert Krebbers committed Feb 01, 2016 381 ``````Lemma cmra_included_r x y : y ≼ x ⋅ y. `````` Robbert Krebbers committed Feb 11, 2016 382 ``````Proof. rewrite (comm op); apply cmra_included_l. Qed. `````` Robbert Krebbers committed Nov 20, 2015 383 `````` `````` Robbert Krebbers committed May 28, 2016 384 385 386 387 388 389 390 391 392 ``````Lemma cmra_pcore_preserving' x y cx : x ≼ y → pcore x ≡ Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy. Proof. intros ? (cx'&?&Hcx)%equiv_Some_inv_r'. destruct (cmra_pcore_preserving x y cx') as (cy&->&?); auto. exists cy; by rewrite Hcx. Qed. Lemma cmra_pcore_preservingN' n x y cx : x ≼{n} y → pcore x ≡{n}≡ Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼{n} cy. `````` Robbert Krebbers committed Feb 26, 2016 393 ``````Proof. `````` Robbert Krebbers committed May 28, 2016 394 395 396 397 398 399 400 `````` intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'. destruct (cmra_pcore_preserving x (x ⋅ z) cx') as (cy&Hxy&?); auto using cmra_included_l. assert (pcore y ≡{n}≡ Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'. { by rewrite Hy Hxy. } exists cy'; split; first done. rewrite Hcx -Hcy'; auto using cmra_included_includedN. `````` Robbert Krebbers committed Feb 26, 2016 401 ``````Qed. `````` Robbert Krebbers committed May 28, 2016 402 403 ``````Lemma cmra_included_pcore x cx : pcore x = Some cx → cx ≼ x. Proof. exists x. by rewrite cmra_pcore_l. Qed. `````` Robbert Krebbers committed Feb 11, 2016 404 ``````Lemma cmra_preservingN_l n x y z : x ≼{n} y → z ⋅ x ≼{n} z ⋅ y. `````` Robbert Krebbers committed Feb 11, 2016 405 ``````Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed. `````` Robbert Krebbers committed Feb 01, 2016 406 ``````Lemma cmra_preserving_l x y z : x ≼ y → z ⋅ x ≼ z ⋅ y. `````` Robbert Krebbers committed Feb 11, 2016 407 ``````Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed. `````` Robbert Krebbers committed Feb 11, 2016 408 ``````Lemma cmra_preservingN_r n x y z : x ≼{n} y → x ⋅ z ≼{n} y ⋅ z. `````` Robbert Krebbers committed Feb 11, 2016 409 ``````Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed. `````` Robbert Krebbers committed Feb 01, 2016 410 ``````Lemma cmra_preserving_r x y z : x ≼ y → x ⋅ z ≼ y ⋅ z. `````` Robbert Krebbers committed Feb 11, 2016 411 ``````Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed. `````` Robbert Krebbers committed Feb 01, 2016 412 `````` `````` Robbert Krebbers committed Feb 18, 2016 413 ``````Lemma cmra_included_dist_l n x1 x2 x1' : `````` Ralf Jung committed Feb 10, 2016 414 `````` x1 ≼ x2 → x1' ≡{n}≡ x1 → ∃ x2', x1' ≼ x2' ∧ x2' ≡{n}≡ x2. `````` Robbert Krebbers committed Nov 11, 2015 415 ``````Proof. `````` Robbert Krebbers committed Feb 01, 2016 416 417 `````` intros [z Hx2] Hx1; exists (x1' ⋅ z); split; auto using cmra_included_l. by rewrite Hx1 Hx2. `````` Robbert Krebbers committed Nov 11, 2015 418 ``````Qed. `````` Robbert Krebbers committed Feb 01, 2016 419 `````` `````` Robbert Krebbers committed May 28, 2016 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 ``````(** ** Total core *) Section total_core. Context `{CMRATotal A}. Lemma cmra_core_l x : core x ⋅ x ≡ x. Proof. destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l. Qed. Lemma cmra_core_idemp x : core (core x) ≡ core x. Proof. destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp. Qed. Lemma cmra_core_preserving x y : x ≼ y → core x ≼ core y. Proof. intros; destruct (cmra_total x) as [cx Hcx]. destruct (cmra_pcore_preserving x y cx) as (cy&Hcy&?); auto. by rewrite /core /= Hcx Hcy. Qed. Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _). Proof. intros x y Hxy. destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= -Hxy Hcx. Qed. Global Instance cmra_core_proper : Proper ((≡) ==> (≡)) (@core A _). Proof. apply (ne_proper _). Qed. Lemma cmra_core_r x : x ⋅ core x ≡ x. Proof. by rewrite (comm _ x) cmra_core_l. Qed. `````` Robbert Krebbers committed May 30, 2016 449 450 `````` Lemma cmra_core_dup x : core x ≡ core x ⋅ core x. Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed. `````` Robbert Krebbers committed May 28, 2016 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 `````` Lemma cmra_core_validN n x : ✓{n} x → ✓{n} core x. Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed. Lemma cmra_core_valid x : ✓ x → ✓ core x. Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed. Lemma persistent_total x : Persistent x ↔ core x ≡ x. Proof. split; [intros; by rewrite /core /= (persistent x)|]. rewrite /Persistent /core /=. destruct (cmra_total x) as [? ->]. by constructor. Qed. Lemma persistent_core x `{!Persistent x} : core x ≡ x. Proof. by apply persistent_total. Qed. Global Instance cmra_core_persistent x : Persistent (core x). Proof. destruct (cmra_total x) as [cx Hcx]. rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp. Qed. Lemma cmra_included_core x : core x ≼ x. Proof. by exists x; rewrite cmra_core_l. Qed. Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n). Proof. split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r. Qed. Global Instance cmra_included_preorder : PreOrder (@included A _ _). Proof. split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r. Qed. Lemma cmra_core_preservingN n x y : x ≼{n} y → core x ≼{n} core y. Proof. intros [z ->]. apply cmra_included_includedN, cmra_core_preserving, cmra_included_l. Qed. End total_core. `````` Robbert Krebbers committed Jan 16, 2016 488 ``````(** ** Timeless *) `````` Robbert Krebbers committed Feb 10, 2016 489 ``````Lemma cmra_timeless_included_l x y : Timeless x → ✓{0} y → x ≼{0} y → x ≼ y. `````` Robbert Krebbers committed Dec 11, 2015 490 491 ``````Proof. intros ?? [x' ?]. `````` Robbert Krebbers committed Feb 24, 2016 492 `````` destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *. `````` Robbert Krebbers committed Jan 13, 2016 493 `````` by exists z'; rewrite Hy (timeless x z). `````` Robbert Krebbers committed Dec 11, 2015 494 ``````Qed. `````` Robbert Krebbers committed Feb 10, 2016 495 ``````Lemma cmra_timeless_included_r n x y : Timeless y → x ≼{0} y → x ≼{n} y. `````` Robbert Krebbers committed Dec 11, 2015 496 ``````Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed. `````` Robbert Krebbers committed Jan 14, 2016 497 ``````Lemma cmra_op_timeless x1 x2 : `````` Robbert Krebbers committed Dec 11, 2015 498 `````` ✓ (x1 ⋅ x2) → Timeless x1 → Timeless x2 → Timeless (x1 ⋅ x2). `````` Robbert Krebbers committed Nov 18, 2015 499 500 ``````Proof. intros ??? z Hz. `````` Robbert Krebbers committed Feb 24, 2016 501 `````` destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *. `````` Robbert Krebbers committed Feb 24, 2016 502 `````` { rewrite -?Hz. by apply cmra_valid_validN. } `````` Robbert Krebbers committed Jan 13, 2016 503 `````` by rewrite Hz' (timeless x1 y1) // (timeless x2 y2). `````` Robbert Krebbers committed Nov 18, 2015 504 ``````Qed. `````` Robbert Krebbers committed Nov 20, 2015 505 `````` `````` Robbert Krebbers committed Feb 24, 2016 506 507 508 509 510 511 512 513 ``````(** ** Discrete *) Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x : ✓ x ↔ ✓{n} x. Proof. split; first by rewrite cmra_valid_validN. eauto using cmra_discrete_valid, cmra_validN_le with lia. Qed. Lemma cmra_discrete_included_iff `{Discrete A} n x y : x ≼ y ↔ x ≼{n} y. Proof. `````` Robbert Krebbers committed Mar 11, 2016 514 `````` split; first by apply cmra_included_includedN. `````` Robbert Krebbers committed Feb 24, 2016 515 516 517 `````` intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l. Qed. `````` Robbert Krebbers committed Feb 11, 2016 518 ``````(** ** Local updates *) `````` Ralf Jung committed Feb 11, 2016 519 520 ``````Global Instance local_update_proper Lv (L : A → A) : LocalUpdate Lv L → Proper ((≡) ==> (≡)) L. `````` Robbert Krebbers committed Feb 11, 2016 521 522 ``````Proof. intros; apply (ne_proper _). Qed. `````` Ralf Jung committed Feb 11, 2016 523 524 ``````Lemma local_update L `{!LocalUpdate Lv L} x y : Lv x → ✓ (x ⋅ y) → L (x ⋅ y) ≡ L x ⋅ y. `````` Robbert Krebbers committed Feb 24, 2016 525 526 527 ``````Proof. by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L). Qed. `````` Robbert Krebbers committed Feb 11, 2016 528 529 `````` Global Instance local_update_op x : LocalUpdate (λ _, True) (op x). `````` Robbert Krebbers committed Feb 11, 2016 530 ``````Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed. `````` Robbert Krebbers committed Feb 11, 2016 531 `````` `````` Ralf Jung committed Feb 13, 2016 532 533 534 ``````Global Instance local_update_id : LocalUpdate (λ _, True) (@id A). Proof. split; auto with typeclass_instances. Qed. `````` Jacques-Henri Jourdan committed May 31, 2016 535 536 537 538 ``````Global Instance exclusive_local_update y : LocalUpdate Exclusive (λ _, y) | 1000. Proof. split. apply _. by intros ??? H ?%H. Qed. `````` Robbert Krebbers committed Feb 01, 2016 539 ``````(** ** Updates *) `````` Ralf Jung committed Feb 03, 2016 540 ``````Lemma cmra_update_updateP x y : x ~~> y ↔ x ~~>: (y =). `````` Robbert Krebbers committed May 28, 2016 541 ``````Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed. `````` Ralf Jung committed Feb 03, 2016 542 ``````Lemma cmra_updateP_id (P : A → Prop) x : P x → x ~~>: P. `````` Robbert Krebbers committed May 28, 2016 543 ``````Proof. intros ? n mz ?; eauto. Qed. `````` Robbert Krebbers committed Feb 02, 2016 544 ``````Lemma cmra_updateP_compose (P Q : A → Prop) x : `````` Ralf Jung committed Feb 03, 2016 545 `````` x ~~>: P → (∀ y, P y → y ~~>: Q) → x ~~>: Q. `````` Robbert Krebbers committed May 28, 2016 546 ``````Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed. `````` Robbert Krebbers committed Feb 08, 2016 547 548 549 ``````Lemma cmra_updateP_compose_l (Q : A → Prop) x y : x ~~> y → y ~~>: Q → x ~~>: Q. Proof. rewrite cmra_update_updateP. `````` Robbert Krebbers committed May 28, 2016 550 `````` intros; apply cmra_updateP_compose with (y =); naive_solver. `````` Robbert Krebbers committed Feb 08, 2016 551 ``````Qed. `````` Robbert Krebbers committed May 28, 2016 552 553 ``````Lemma cmra_updateP_weaken (P Q : A → Prop) x : x ~~>: P → (∀ y, P y → Q y) → x ~~>: Q. `````` Robbert Krebbers committed Feb 02, 2016 554 ``````Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed. `````` Robbert Krebbers committed May 28, 2016 555 556 557 558 559 560 561 ``````Global Instance cmra_update_preorder : PreOrder (@cmra_update A). Proof. split. - intros x. by apply cmra_update_updateP, cmra_updateP_id. - intros x y z. rewrite !cmra_update_updateP. eauto using cmra_updateP_compose with subst. Qed. `````` Jacques-Henri Jourdan committed May 31, 2016 562 563 564 ``````Lemma cmra_update_exclusive `{!Exclusive x} y: ✓ y → x ~~> y. Proof. move=>??[z|]=>[/exclusiveN_r[]|_]. by apply cmra_valid_validN. Qed. `````` Robbert Krebbers committed Feb 02, 2016 565 `````` `````` Robbert Krebbers committed Feb 02, 2016 566 ``````Lemma cmra_updateP_op (P1 P2 Q : A → Prop) x1 x2 : `````` Robbert Krebbers committed May 28, 2016 567 568 `````` x1 ~~>: P1 → x2 ~~>: P2 → (∀ y1 y2, P1 y1 → P2 y2 → Q (y1 ⋅ y2)) → x1 ⋅ x2 ~~>: Q. `````` Robbert Krebbers committed Feb 02, 2016 569 ``````Proof. `````` Robbert Krebbers committed May 28, 2016 570 571 572 573 574 575 `````` intros Hx1 Hx2 Hy n mz ?. destruct (Hx1 n (Some (x2 ⋅? mz))) as (y1&?&?). { by rewrite /= -cmra_opM_assoc. } destruct (Hx2 n (Some (y1 ⋅? mz))) as (y2&?&?). { by rewrite /= -cmra_opM_assoc (comm _ x2) cmra_opM_assoc. } exists (y1 ⋅ y2); split; last rewrite (comm _ y1) cmra_opM_assoc; auto. `````` Robbert Krebbers committed Feb 02, 2016 576 ``````Qed. `````` Robbert Krebbers committed Feb 02, 2016 577 ``````Lemma cmra_updateP_op' (P1 P2 : A → Prop) x1 x2 : `````` Robbert Krebbers committed May 28, 2016 578 579 `````` x1 ~~>: P1 → x2 ~~>: P2 → x1 ⋅ x2 ~~>: λ y, ∃ y1 y2, y = y1 ⋅ y2 ∧ P1 y1 ∧ P2 y2. `````` Robbert Krebbers committed Feb 02, 2016 580 ``````Proof. eauto 10 using cmra_updateP_op. Qed. `````` Ralf Jung committed Feb 03, 2016 581 ``````Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1 → x2 ~~> y2 → x1 ⋅ x2 ~~> y1 ⋅ y2. `````` Robbert Krebbers committed Feb 02, 2016 582 ``````Proof. `````` Robbert Krebbers committed Feb 02, 2016 583 `````` rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence. `````` Robbert Krebbers committed Feb 02, 2016 584 ``````Qed. `````` Robbert Krebbers committed May 28, 2016 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 `````` Section total_updates. Context `{CMRATotal A}. Lemma cmra_total_updateP x (P : A → Prop) : x ~~>: P ↔ ∀ n z, ✓{n} (x ⋅ z) → ∃ y, P y ∧ ✓{n} (y ⋅ z). Proof. split=> Hup; [intros n z; apply (Hup n (Some z))|]. intros n [z|] ?; simpl; [by apply Hup|]. destruct (Hup n (core x)) as (y&?&?); first by rewrite cmra_core_r. eauto using cmra_validN_op_l. Qed. Lemma cmra_total_update x y : x ~~> y ↔ ∀ n z, ✓{n} (x ⋅ z) → ✓{n} (y ⋅ z). Proof. rewrite cmra_update_updateP cmra_total_updateP. naive_solver. Qed. Context `{CMRADiscrete A}. Lemma cmra_discrete_updateP (x : A) (P : A → Prop) : x ~~>: P ↔ ∀ z, ✓ (x ⋅ z) → ∃ y, P y ∧ ✓ (y ⋅ z). Proof. rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff. naive_solver eauto using 0. Qed. Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) : x ~~> y ↔ ∀ z, ✓ (x ⋅ z) → ✓ (y ⋅ z). Proof. rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff. naive_solver eauto using 0. Qed. End total_updates. `````` Robbert Krebbers committed Nov 11, 2015 615 616 ``````End cmra. `````` Robbert Krebbers committed May 27, 2016 617 618 ``````(** * Properties about CMRAs with a unit element **) Section ucmra. `````` Robbert Krebbers committed May 28, 2016 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 `````` Context {A : ucmraT}. Implicit Types x y z : A. Global Instance ucmra_unit_inhabited : Inhabited A := populate ∅. Lemma ucmra_unit_validN n : ✓{n} (∅:A). Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed. Lemma ucmra_unit_leastN n x : ∅ ≼{n} x. Proof. by exists x; rewrite left_id. Qed. Lemma ucmra_unit_least x : ∅ ≼ x. Proof. by exists x; rewrite left_id. Qed. Global Instance ucmra_unit_right_id : RightId (≡) ∅ (@op A _). Proof. by intros x; rewrite (comm op) left_id. Qed. Global Instance ucmra_unit_persistent : Persistent (∅:A). Proof. apply ucmra_pcore_unit. Qed. Global Instance cmra_unit_total : CMRATotal A. Proof. intros x. destruct (cmra_pcore_preserving' ∅ x ∅) as (cx&->&?); eauto using ucmra_unit_least, (persistent ∅). Qed. `````` Robbert Krebbers committed May 27, 2016 640 `````` `````` Robbert Krebbers committed May 28, 2016 641 642 643 644 645 646 `````` Lemma ucmra_update_unit x : x ~~> ∅. Proof. apply cmra_total_update=> n z. rewrite left_id; apply cmra_validN_op_r. Qed. Lemma ucmra_update_unit_alt y : ∅ ~~> y ↔ ∀ x, x ~~> y. Proof. split; [intros; trans ∅|]; auto using ucmra_update_unit. Qed. `````` Robbert Krebbers committed May 27, 2016 647 ``````End ucmra. `````` Robbert Krebbers committed May 28, 2016 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 ``````Hint Immediate cmra_unit_total. (** * Constructing a CMRA with total core *) Section cmra_total. Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}. Context (total : ∀ x, is_Some (pcore x)). Context (op_ne : ∀ n (x : A), Proper (dist n ==> dist n) (op x)). Context (core_ne : ∀ n, Proper (dist n ==> dist n) (@core A _)). Context (validN_ne : ∀ n, Proper (dist n ==> impl) (@validN A _ n)). Context (valid_validN : ∀ (x : A), ✓ x ↔ ∀ n, ✓{n} x). Context (validN_S : ∀ n (x : A), ✓{S n} x → ✓{n} x). Context (op_assoc : Assoc (≡) (@op A _)). Context (op_comm : Comm (≡) (@op A _)). Context (core_l : ∀ x : A, core x ⋅ x ≡ x). Context (core_idemp : ∀ x : A, core (core x) ≡ core x). Context (core_preserving : ∀ x y : A, x ≼ y → core x ≼ core y). Context (validN_op_l : ∀ n (x y : A), ✓{n} (x ⋅ y) → ✓{n} x). Context (extend : ∀ n (x y1 y2 : A), ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → { z | x ≡ z.1 ⋅ z.2 ∧ z.1 ≡{n}≡ y1 ∧ z.2 ≡{n}≡ y2 }). Lemma cmra_total_mixin : CMRAMixin A. Proof. split; auto. - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto. - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx. - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=. case (total cx)=>[ccx ->]; by constructor. - intros x y cx Hxy%core_preserving Hx. move: Hxy. rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto. Qed. End cmra_total. `````` Robbert Krebbers committed May 27, 2016 680 `````` `````` Robbert Krebbers committed Feb 01, 2016 681 ``````(** * Properties about monotone functions *) `````` Robbert Krebbers committed Jan 14, 2016 682 ``````Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A). `````` Robbert Krebbers committed Feb 26, 2016 683 ``````Proof. repeat split; by try apply _. Qed. `````` Robbert Krebbers committed Feb 01, 2016 684 685 ``````Instance cmra_monotone_compose {A B C : cmraT} (f : A → B) (g : B → C) : CMRAMonotone f → CMRAMonotone g → CMRAMonotone (g ∘ f). `````` Robbert Krebbers committed Nov 20, 2015 686 687 ``````Proof. split. `````` Robbert Krebbers committed Feb 26, 2016 688 `````` - apply _. `````` Robbert Krebbers committed Feb 17, 2016 689 `````` - move=> n x Hx /=. by apply validN_preserving, validN_preserving. `````` Robbert Krebbers committed Feb 26, 2016 690 `````` - move=> x y Hxy /=. by apply included_preserving, included_preserving. `````` Robbert Krebbers committed Nov 20, 2015 691 ``````Qed. `````` Robbert Krebbers committed Nov 16, 2015 692 `````` `````` Robbert Krebbers committed Feb 01, 2016 693 694 ``````Section cmra_monotone. Context {A B : cmraT} (f : A → B) `{!CMRAMonotone f}. `````` Robbert Krebbers committed Feb 26, 2016 695 696 `````` Global Instance cmra_monotone_proper : Proper ((≡) ==> (≡)) f := ne_proper _. Lemma includedN_preserving n x y : x ≼{n} y → f x ≼{n} f y. `````` Robbert Krebbers committed Feb 01, 2016 697 `````` Proof. `````` Robbert Krebbers committed Feb 26, 2016 698 `````` intros [z ->]. `````` Robbert Krebbers committed Feb 26, 2016 699 `````` apply cmra_included_includedN, (included_preserving f), cmra_included_l. `````` Robbert Krebbers committed Feb 01, 2016 700 `````` Qed. `````` Robbert Krebbers committed Feb 11, 2016 701 `````` Lemma valid_preserving x : ✓ x → ✓ f x. `````` Robbert Krebbers committed Feb 01, 2016 702 703 704 `````` Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed. End cmra_monotone. `````` Robbert Krebbers committed May 25, 2016 705 706 ``````(** Functors *) Structure rFunctor := RFunctor { `````` Robbert Krebbers committed May 27, 2016 707 `````` rFunctor_car : cofeT → cofeT → cmraT; `````` Robbert Krebbers committed May 25, 2016 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 `````` rFunctor_map {A1 A2 B1 B2} : ((A2 -n> A1) * (B1 -n> B2)) → rFunctor_car A1 B1 -n> rFunctor_car A2 B2; rFunctor_ne A1 A2 B1 B2 n : Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2); rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x ≡ x; rFunctor_compose {A1 A2 A3 B1 B2 B3} (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x : rFunctor_map (f◎g, g'◎f') x ≡ rFunctor_map (g,g') (rFunctor_map (f,f') x); rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) : CMRAMonotone (rFunctor_map fg) }. Existing Instances rFunctor_ne rFunctor_mono. Instance: Params (@rFunctor_map) 5. Class rFunctorContractive (F : rFunctor) := rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2). Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A. Coercion rFunctor_diag : rFunctor >-> Funclass. Program Definition constRF (B : cmraT) : rFunctor := {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}. Solve Obligations with done. Instance constRF_contractive B : rFunctorContractive (constRF B). Proof. rewrite /rFunctorContractive; apply _. Qed. `````` Robbert Krebbers committed May 27, 2016 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 ``````Structure urFunctor := URFunctor { urFunctor_car : cofeT → cofeT → ucmraT; urFunctor_map {A1 A2 B1 B2} : ((A2 -n> A1) * (B1 -n> B2)) → urFunctor_car A1 B1 -n> urFunctor_car A2 B2; urFunctor_ne A1 A2 B1 B2 n : Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2); urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x ≡ x; urFunctor_compose {A1 A2 A3 B1 B2 B3} (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x : urFunctor_map (f◎g, g'◎f') x ≡ urFunctor_map (g,g') (urFunctor_map (f,f') x); urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) : CMRAMonotone (urFunctor_map fg) }. Existing Instances urFunctor_ne urFunctor_mono. Instance: Params (@urFunctor_map) 5. Class urFunctorContractive (F : urFunctor) := urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2). Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A. Coercion urFunctor_diag : urFunctor >-> Funclass. Program Definition constURF (B : ucmraT) : urFunctor := {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}. Solve Obligations with done. Instance constURF_contractive B : urFunctorContractive (constURF B). Proof. rewrite /urFunctorContractive; apply _. Qed. `````` Robbert Krebbers committed Feb 08, 2016 764 765 766 767 768 769 770 771 772 773 774 775 776 ``````(** * Transporting a CMRA equality *) Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B := eq_rect A id x _ H. Section cmra_transport. Context {A B : cmraT} (H : A = B). Notation T := (cmra_transport H). Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T. Proof. by intros ???; destruct H. Qed. Global Instance cmra_transport_proper : Proper ((≡) ==> (≡)) T. Proof. by intros ???; destruct H. Qed. Lemma cmra_transport_op x y : T (x ⋅ y) = T x ⋅ T y. Proof. by destruct H. Qed. `````` Ralf Jung committed Mar 08, 2016 777 `````` Lemma cmra_transport_core x : T (core x) = core (T x). `````` Robbert Krebbers committed Feb 08, 2016 778 `````` Proof. by destruct H. Qed. `````` Robbert Krebbers committed Feb 11, 2016 779 `````` Lemma cmra_transport_validN n x : ✓{n} T x ↔ ✓{n} x. `````` Robbert Krebbers committed Feb 08, 2016 780 `````` Proof. by destruct H. Qed. `````` Robbert Krebbers committed Feb 11, 2016 781 `````` Lemma cmra_transport_valid x : ✓ T x ↔ ✓ x. `````` Robbert Krebbers committed Feb 08, 2016 782 783 784 `````` Proof. by destruct H. Qed. Global Instance cmra_transport_timeless x : Timeless x → Timeless (T x). Proof. by destruct H. Qed. `````` Robbert Krebbers committed Mar 15, 2016 785 786 `````` Global Instance cmra_transport_persistent x : Persistent x → Persistent (T x). Proof. by destruct H. Qed. `````` Robbert Krebbers committed Feb 08, 2016 787 788 789 790 791 792 793 794 `````` Lemma cmra_transport_updateP (P : A → Prop) (Q : B → Prop) x : x ~~>: P → (∀ y, P y → Q (T y)) → T x ~~>: Q. Proof. destruct H; eauto using cmra_updateP_weaken. Qed. Lemma cmra_transport_updateP' (P : A → Prop) x : x ~~>: P → T x ~~>: λ y, ∃ y', y = cmra_transport H y' ∧ P y'. Proof. eauto using cmra_transport_updateP. Qed. End cmra_transport. `````` Robbert Krebbers committed Feb 01, 2016 795 796 ``````(** * Instances *) (** ** Discrete CMRA *) `````` Robbert Krebbers committed May 28, 2016 797 ``````Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := { `````` Robbert Krebbers committed Feb 01, 2016 798 `````` (* setoids *) `````` Robbert Krebbers committed May 28, 2016 799 800 801 802 `````` ra_op_proper (x : A) : Proper ((≡) ==> (≡)) (op x); ra_core_proper x y cx : x ≡ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≡ cy; ra_validN_proper : Proper ((≡) ==> impl) valid; `````` Robbert Krebbers committed Feb 01, 2016 803 `````` (* monoid *) `````` Robbert Krebbers committed May 25, 2016 804 805 `````` ra_assoc : Assoc (≡) (⋅); ra_comm : Comm (≡) (⋅); `````` Robbert Krebbers committed May 28, 2016 806 807 808 809 `````` ra_pcore_l x cx : pcore x = Some cx → cx ⋅ x ≡ x; ra_pcore_idemp x cx : pcore x = Some cx → pcore cx ≡ Some cx; ra_pcore_preserving x y cx : x ≼ y → pcore x = Some cx → ∃ cy, pcore y = Some cy ∧ cx ≼ cy; `````` Robbert Krebbers committed Mar 11, 2016 810 `````` ra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x `````` Robbert Krebbers committed Feb 01, 2016 811 812 ``````}. `````` Robbert Krebbers committed Nov 16, 2015 813 ``````Section discrete. `````` Robbert Krebbers committed May 28, 2016 814 `````` Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A (≡)}. `````` Robbert Krebbers committed May 25, 2016 815 816 `````` Context (ra_mix : RAMixin A). Existing Instances discrete_dist discrete_compl. `````` Robbert Krebbers committed Feb 01, 2016 817 `````` `````` Robbert Krebbers committed Feb 10, 2016 818 `````` Instance discrete_validN : ValidN A := λ n x, ✓ x. `````` Robbert Krebbers committed Jan 14, 2016 819 `````` Definition discrete_cmra_mixin : CMRAMixin A. `````` Robbert Krebbers committed Nov 16, 2015 820 `````` Proof. `````` Robbert Krebbers committed May 25, 2016 821 `````` destruct ra_mix; split; try done. ``````