cmra.v 59.8 KB
Newer Older
1
From iris.algebra Require Export ofe monoid.
2
Set Default Proof Using "Type".
3

Robbert Krebbers's avatar
Robbert Krebbers committed
4
Class PCore (A : Type) := pcore : A  option A.
5
Hint Mode PCore ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
6
Instance: Params (@pcore) 2.
7 8

Class Op (A : Type) := op : A  A  A.
9
Hint Mode Op ! : typeclass_instances.
10 11 12 13
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

14 15 16 17 18
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
19 20 21
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
22
Hint Extern 0 (_  _) => reflexivity.
23 24
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
25
Class ValidN (A : Type) := validN : nat  A  Prop.
26
Hint Mode ValidN ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Instance: Params (@validN) 3.
28
Notation "✓{ n } x" := (validN n x)
29
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
30

31
Class Valid (A : Type) := valid : A  Prop.
32
Hint Mode Valid ! : typeclass_instances.
33
Instance: Params (@valid) 2.
34
Notation "✓ x" := (valid x) (at level 20) : C_scope.
35

36
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
37
Notation "x ≼{ n } y" := (includedN n x y)
38
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
39
Instance: Params (@includedN) 4.
40
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
41

Ralf Jung's avatar
Ralf Jung committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Section mixin.
  Local Set Primitive Projections.
  Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
    (* setoids *)
    mixin_cmra_op_ne (x : A) : NonExpansive (op x);
    mixin_cmra_pcore_ne n x y cx :
      x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
    mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
    (* valid *)
    mixin_cmra_valid_validN x :  x   n, {n} x;
    mixin_cmra_validN_S n x : {S n} x  {n} x;
    (* monoid *)
    mixin_cmra_assoc : Assoc () ();
    mixin_cmra_comm : Comm () ();
    mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
    mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
    mixin_cmra_pcore_mono x y cx :
      x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
    mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
    mixin_cmra_extend n x y1 y2 :
      {n} x  x {n} y1  y2 
       z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
  }.
End mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
66

Robbert Krebbers's avatar
Robbert Krebbers committed
67
(** Bundeled version *)
68
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
69 70 71
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
72
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
73
  cmra_op : Op cmra_car;
74
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
75
  cmra_validN : ValidN cmra_car;
76
  cmra_ofe_mixin : OfeMixin cmra_car;
77
  cmra_mixin : CMRAMixin cmra_car;
78
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
79
}.
80
Arguments CMRAT' _ {_ _ _ _ _ _} _ _ _.
81 82 83 84 85
(* Given [m : CMRAMixin A], the notation [CMRAT A m] provides a smart
constructor, which uses [ofe_mixin_of A] to infer the canonical OFE mixin of
the type [A], so that it does not have to be given manually. *)
Notation CMRAT A m := (CMRAT' A (ofe_mixin_of A%type) m A) (only parsing).

86 87 88
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
89
Arguments cmra_pcore : simpl never.
90
Arguments cmra_op : simpl never.
91
Arguments cmra_valid : simpl never.
92
Arguments cmra_validN : simpl never.
93
Arguments cmra_ofe_mixin : simpl never.
94
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
95
Add Printing Constructor cmraT.
96 97 98 99
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
100 101
Coercion cmra_ofeC (A : cmraT) : ofeT := OfeT A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeC.
Robbert Krebbers's avatar
Robbert Krebbers committed
102

103 104 105 106
Definition cmra_mixin_of' A {Ac : cmraT} (f : Ac  A) : CMRAMixin Ac := cmra_mixin Ac.
Notation cmra_mixin_of A :=
  ltac:(let H := eval hnf in (cmra_mixin_of' A id) in exact H) (only parsing).

107 108 109 110
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
111
  Global Instance cmra_op_ne (x : A) : NonExpansive (op x).
112
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
113 114 115
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
116 117
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
118 119
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
120 121
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
122 123 124 125
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128 129
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
130
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
131
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
132
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
133 134
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
135
  Lemma cmra_extend n x y1 y2 :
136
    {n} x  x {n} y1  y2 
137
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
138
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
139 140
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146 147
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.
148
Hint Mode Persistent + ! : typeclass_instances.
149
Instance: Params (@Persistent) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
150

151
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
152 153
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
154
Hint Mode Exclusive + ! : typeclass_instances.
155
Instance: Params (@Exclusive) 1.
156

157 158 159 160 161
(** * Cancelable elements. *)
Class Cancelable {A : cmraT} (x : A) :=
  cancelableN n y z : {n}(x  y)  x  y {n} x  z  y {n} z.
Arguments cancelableN {_} _ {_} _ _ _ _.
Hint Mode Cancelable + ! : typeclass_instances.
162
Instance: Params (@Cancelable) 1.
163 164 165 166 167 168

(** * Identity-free elements. *)
Class IdFree {A : cmraT} (x : A) :=
  id_free0_r y : {0}x  x  y {0} x  False.
Arguments id_free0_r {_} _ {_} _ _.
Hint Mode IdFree + ! : typeclass_instances.
169
Instance: Params (@IdFree) 1.
170

Robbert Krebbers's avatar
Robbert Krebbers committed
171 172 173 174
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).
175
Hint Mode CMRATotal ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
176 177

Class Core (A : Type) := core : A  A.
178
Hint Mode Core ! : typeclass_instances.
Robbert Krebbers's avatar
Robbert Krebbers committed
179 180 181 182 183
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
184
(** * CMRAs with a unit element *)
Robbert Krebbers's avatar
Robbert Krebbers committed
185 186 187 188 189 190 191
Class Unit (A : Type) := ε : A.
Arguments ε {_ _}.

Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Unit A} := {
  mixin_ucmra_unit_valid :  ε;
  mixin_ucmra_unit_left_id : LeftId () ε ();
  mixin_ucmra_pcore_unit : pcore ε  Some ε
192
}.
193

194
Structure ucmraT := UCMRAT' {
195 196 197
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
198
  ucmra_pcore : PCore ucmra_car;
199 200 201
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
202
  ucmra_unit : Unit ucmra_car;
203
  ucmra_ofe_mixin : OfeMixin ucmra_car;
204
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
205
  ucmra_mixin : UCMRAMixin ucmra_car;
206
  _ : Type;
207
}.
208
Arguments UCMRAT' _ {_ _ _ _ _ _ _} _ _ _ _.
209 210
Notation UCMRAT A m :=
  (UCMRAT' A (ofe_mixin_of A%type) (cmra_mixin_of A%type) m A) (only parsing).
211 212 213
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
Arguments ucmra_pcore : simpl never.
215 216 217
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
218
Arguments ucmra_ofe_mixin : simpl never.
219 220 221
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
Robbert Krebbers's avatar
Robbert Krebbers committed
222
Hint Extern 0 (Unit _) => eapply (@ucmra_unit _) : typeclass_instances.
223 224
Coercion ucmra_ofeC (A : ucmraT) : ofeT := OfeT A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeC.
225
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
226
  CMRAT' A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A) A.
227 228 229 230 231 232
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
  Lemma ucmra_unit_valid :  (ε : A).
234
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  Global Instance ucmra_unit_left_id : LeftId () ε (@op A _).
236
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
237
  Lemma ucmra_pcore_unit : pcore (ε:A)  Some ε.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
239
End ucmra_mixin.
240

241
(** * Discrete CMRAs *)
242
Class CMRADiscrete (A : cmraT) := {
243
  cmra_discrete_ofe_discrete :> OFEDiscrete A;
244 245
  cmra_discrete_valid (x : A) : {0} x   x
}.
246
Hint Mode CMRADiscrete ! : typeclass_instances.
247

Robbert Krebbers's avatar
Robbert Krebbers committed
248
(** * Morphisms *)
249 250 251 252 253
Class CMRAMorphism {A B : cmraT} (f : A  B) := {
  cmra_morphism_ne :> NonExpansive f;
  cmra_morphism_validN n x : {n} x  {n} f x;
  cmra_morphism_pcore x : pcore (f x)  f <$> pcore x;
  cmra_morphism_op x y : f x  f y  f (x  y)
254
}.
255 256 257
Arguments cmra_morphism_validN {_ _} _ {_} _ _ _.
Arguments cmra_morphism_pcore {_ _} _ {_} _.
Arguments cmra_morphism_op {_ _} _ {_} _ _.
258

Robbert Krebbers's avatar
Robbert Krebbers committed
259
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
260
Section cmra.
261
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
262
Implicit Types x y z : A.
263
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
264

265
(** ** Setoids *)
266
Global Instance cmra_pcore_ne' : NonExpansive (@pcore A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
267
Proof.
268
  intros n x y Hxy. destruct (pcore x) as [cx|] eqn:?.
Robbert Krebbers's avatar
Robbert Krebbers committed
269 270 271 272 273 274
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
275
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277 278
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
279
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
280 281
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
282 283
Global Instance cmra_op_ne' : NonExpansive2 (@op A _).
Proof. intros n x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
284
Global Instance cmra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
285 286 287 288 289 290 291
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
292 293 294 295
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
314
Global Instance cmra_opM_ne : NonExpansive2 (@opM A).
315
Proof. destruct 2; by ofe_subst. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
316 317
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
318

319 320 321 322 323 324 325 326 327
Global Instance Persistent_proper : Proper (() ==> iff) (@Persistent A).
Proof. solve_proper. Qed.
Global Instance Exclusive_proper : Proper (() ==> iff) (@Exclusive A).
Proof. intros x y Hxy. rewrite /Exclusive. by setoid_rewrite Hxy. Qed.
Global Instance Cancelable_proper : Proper (() ==> iff) (@Cancelable A).
Proof. intros x y Hxy. rewrite /Cancelable. by setoid_rewrite Hxy. Qed.
Global Instance IdFree_proper : Proper (() ==> iff) (@IdFree A).
Proof. intros x y Hxy. rewrite /IdFree. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
328 329 330 331
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

332
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
333
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
334 335 336
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
338
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
339 340 341
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
342
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
343 344 345
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
346
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
348
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
350
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed.
351 352 353 354
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
355 356 357 358 359 360 361 362
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
363

364 365 366 367
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

368
(** ** Exclusive elements *)
369
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
370
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
371 372 373 374 375 376
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
377
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
378
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
379 380 381 382
Lemma exclusive_includedN n x `{!Exclusive x} y : x {n} y  {n} y  False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x  y   y  False.
Proof. intros [? ->]. by apply exclusive_l. Qed.
383

384
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
385 386
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
387
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
388
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
389
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
390
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
Global Instance cmra_included_trans: Transitive (@included A _ _).
392
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
393
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
394
Qed.
395 396
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
398
Proof. intros Hyv [z ?]; ofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
401

Robbert Krebbers's avatar
Robbert Krebbers committed
402
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
403
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
405 406 407 408 409 410 411
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
412
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
413
Lemma cmra_included_r x y : y  x  y.
414
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
415

416
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
417 418 419
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
420
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
421 422
  exists cy; by rewrite Hcx.
Qed.
423
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
424
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
425
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
426
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
427
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
428 429 430 431 432
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
433
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
434 435
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
436

437
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
438
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
439
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
440
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
441 442 443 444
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
445 446 447 448
Lemma cmra_monoN n x1 x2 y1 y2 : x1 {n} y1  x2 {n} y2  x1  x2 {n} y1  y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1  y1  x2  y2  x1  x2  y1  y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.
449

450 451 452 453 454 455 456
Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
457
Lemma cmra_included_dist_l n x1 x2 x1' :
458
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
459
Proof.
460 461
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
Qed.
463

Robbert Krebbers's avatar
Robbert Krebbers committed
464 465
(** ** Total core *)
Section total_core.
466
  Local Set Default Proof Using "Type*".
Robbert Krebbers's avatar
Robbert Krebbers committed
467 468 469 470 471 472 473 474 475 476
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
477
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
478 479
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
480
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482 483
    by rewrite /core /= Hcx Hcy.
  Qed.

484
  Global Instance cmra_core_ne : NonExpansive (@core A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
485
  Proof.
486
    intros n x y Hxy. destruct (cmra_total x) as [cx Hcx].
Robbert Krebbers's avatar
Robbert Krebbers committed
487 488 489 490 491 492 493
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
494 495
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
526
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
527 528
  Proof.
    intros [z ->].
529
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
530 531 532
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
533
(** ** Timeless *)
534
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
535 536
Proof.
  intros ?? [x' ?].
537
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
538
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
539
Qed.
540 541
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
542
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
543
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
544 545
Proof.
  intros ??? z Hz.
546
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
547
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
548
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
549
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
550

551 552 553 554 555 556
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
557
Lemma cmra_discrete_included_iff `{OFEDiscrete A} n x y : x  y  x {n} y.
558
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
  split; first by apply cmra_included_includedN.
560 561
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
562 563 564

(** Cancelable elements  *)
Global Instance cancelable_proper : Proper (equiv ==> iff) (@Cancelable A).
565 566
Proof. unfold Cancelable. intros x x' EQ. by setoid_rewrite EQ. Qed.
Lemma cancelable x `{!Cancelable x} y z : (x  y)  x  y  x  z  y  z.
567 568 569 570 571 572 573
Proof. rewrite !equiv_dist cmra_valid_validN. intros. by apply (cancelableN x). Qed.
Lemma discrete_cancelable x `{CMRADiscrete A}:
  ( y z, (x  y)  x  y  x  z  y  z)  Cancelable x.
Proof. intros ????. rewrite -!timeless_iff -cmra_discrete_valid_iff. auto. Qed.
Global Instance cancelable_op x y :
  Cancelable x  Cancelable y  Cancelable (x  y).
Proof.
574
  intros ?? n z z' ??. apply (cancelableN y), (cancelableN x).
575 576 577 578 579
  - eapply cmra_validN_op_r. by rewrite assoc.
  - by rewrite assoc.
  - by rewrite !assoc.
Qed.
Global Instance exclusive_cancelable (x : A) : Exclusive x  Cancelable x.
580
Proof. intros ? n z z' []%(exclusiveN_l _ x). Qed.
581 582

(** Id-free elements  *)
583
Global Instance id_free_ne n : Proper (dist n ==> iff) (@IdFree A).
584
Proof.
585 586
  intros x x' EQ%(dist_le _ 0); last lia. rewrite /IdFree.
  split=> y ?; (rewrite -EQ || rewrite EQ); eauto.
587 588
Qed.
Global Instance id_free_proper : Proper (equiv ==> iff) (@IdFree A).
589
Proof. by move=> P Q /equiv_dist /(_ 0)=> ->. Qed.
590 591 592 593 594 595 596 597 598
Lemma id_freeN_r n n' x `{!IdFree x} y : {n}x  x  y {n'} x  False.
Proof. eauto using cmra_validN_le, dist_le with lia. Qed.
Lemma id_freeN_l n n' x `{!IdFree x} y : {n}x  y  x {n'} x  False.
Proof. rewrite comm. eauto using id_freeN_r. Qed.
Lemma id_free_r x `{!IdFree x} y : x  x  y  x  False.
Proof. move=> /cmra_valid_validN ? /equiv_dist. eauto. Qed.
Lemma id_free_l x `{!IdFree x} y : x  y  x  x  False.
Proof. rewrite comm. eauto using id_free_r. Qed.
Lemma discrete_id_free x `{CMRADiscrete A}:
599
  ( y,  x  x  y  x  False)  IdFree x.
600 601 602
Proof.
  intros Hx y ??. apply (Hx y), (timeless _); eauto using cmra_discrete_valid.
Qed.
603
Global Instance id_free_op_r x y : IdFree y  Cancelable x  IdFree (x  y).
604
Proof.
605
  intros ?? z ? Hid%symmetry. revert Hid. rewrite -assoc=>/(cancelableN x) ?.
606 607
  eapply (id_free0_r _); [by eapply cmra_validN_op_r |symmetry; eauto].
Qed.
608
Global Instance id_free_op_l x y : IdFree x  Cancelable y  IdFree (x  y).
609 610 611
Proof. intros. rewrite comm. apply _. Qed.
Global Instance exclusive_id_free x : Exclusive x  IdFree x.
Proof. intros ? z ? Hid. apply (exclusiveN_l 0 x z). by rewrite Hid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
612 613
End cmra.

614 615
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
616 617 618
  Context {A : ucmraT}.
  Implicit Types x y z : A.

Robbert Krebbers's avatar
Robbert Krebbers committed
619
  Lemma ucmra_unit_validN n : {n} (ε:A).
Robbert Krebbers's avatar
Robbert Krebbers committed
620
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
621
  Lemma ucmra_unit_leastN n x : ε {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
622
  Proof. by exists x; rewrite left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
623
  Lemma ucmra_unit_least x : ε  x.
Robbert Krebbers's avatar
Robbert Krebbers committed
624
  Proof. by exists x; rewrite left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
625
  Global Instance ucmra_unit_right_id : RightId () ε (@op A _).
Robbert Krebbers's avatar
Robbert Krebbers committed
626
  Proof. by intros x; rewrite (comm op) left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
627
  Global Instance ucmra_unit_persistent : Persistent (ε:A).
Robbert Krebbers's avatar
Robbert Krebbers committed
628 629 630 631
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
632 633
    intros x. destruct (cmra_pcore_mono' ε x ε) as (cx&->&?);
      eauto using ucmra_unit_least, (persistent (ε:A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
634
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
635
  Global Instance empty_cancelable : Cancelable (ε:A).
636
  Proof. intros ???. by rewrite !left_id. Qed.
637 638

  (* For big ops *)
Robbert Krebbers's avatar
Robbert Krebbers committed
639
  Global Instance cmra_monoid : Monoid (@op A _) := {| monoid_unit := ε |}.
640
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
641

642
Hint Immediate cmra_unit_total.
643 644 645

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
646
  Local Set Default Proof Using "Type*".
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
Robbert Krebbers's avatar
Robbert Krebbers committed
670
  Lemma persistent_dup_L x `{!Persistent x} : x = x  x.
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
693
  Local Set Default Proof Using "Type*".
694 695 696
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

Robbert Krebbers's avatar
Robbert Krebbers committed
697
  Global Instance ucmra_unit_left_id_L : LeftId (=) ε (@op A _).
698
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
699
  Global Instance ucmra_unit_right_id_L : RightId (=) ε (@op A _).
700 701 702
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
703 704 705
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
706 707
  Context (total :  x : A, is_Some (pcore x)).
  Context (op_ne :  x : A, NonExpansive (op x)).
708
  Context (core_ne : NonExpansive (@core A _)).
Robbert Krebbers's avatar
Robbert Krebbers committed
709 710 711 712 713 714 715
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
716
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
717 718 719
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
720
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
721
  Lemma cmra_total_mixin : CMRAMixin A.
722
  Proof using Type*.
Robbert Krebbers's avatar
Robbert Krebbers committed
723 724