rules.v 7.65 KB
Newer Older
1
From iris.program_logic Require Export weakestpre gen_heap.
2
From iris.program_logic Require Import ectx_lifting.
3
From iris.heap_lang Require Export lang.
4
From iris.heap_lang Require Import tactics.
5
From iris.proofmode Require Import tactics.
6
From iris.prelude Require Import fin_maps.
7
Import uPred.
8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
  heapG_gen_heapG :> gen_heapG loc val Σ
}.

Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := {
  iris_invG := heapG_invG;
  state_interp := gen_heap_ctx
}.

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
  (at level 20, q at level 50, format "l  ↦{ q }  v") : uPred_scope.
Notation "l ↦ v" :=
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : uPred_scope.
Notation "l ↦{ q } -" := ( v, l {q} v)%I
  (at level 20, q at level 50, format "l  ↦{ q }  -") : uPred_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : uPred_scope.

28 29 30 31 32 33 34 35 36
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
37 38
  | H : _ = of_val ?v |- _ =>
     is_var v; destruct v; first[discriminate H|injection H as H]
39 40 41 42 43 44 45 46 47 48 49 50
  | H : head_step ?e _ _ _ _ |- _ =>
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

Local Hint Extern 0 (atomic _) => solve_atomic.
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _; simpl.

Local Hint Constructors head_step.
Local Hint Resolve alloc_fresh.
Local Hint Resolve to_of_val.
51

52 53
Section rules.
Context `{heapG Σ}.
54 55
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
56
Implicit Types efs : list expr.
57
Implicit Types σ : state.
Ralf Jung's avatar
Ralf Jung committed
58

59
(** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *)
60
Lemma wp_bind {E e} K Φ :
61
  WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }}  WP fill K e @ E {{ Φ }}.
62
Proof. exact: wp_ectx_bind. Qed.
Ralf Jung's avatar
Ralf Jung committed
63

64
Lemma wp_bind_ctxi {E e} Ki Φ :
Ralf Jung's avatar
Ralf Jung committed
65 66 67 68
  WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} 
     WP fill_item Ki e @ E {{ Φ }}.
Proof. exact: weakestpre.wp_bind. Qed.

69
(** Base axioms for core primitives of the language: Stateless reductions *)
70
Lemma wp_fork E e Φ :
71
   Φ (LitV LitUnit)   WP e {{ _, True }}  WP Fork e @ E {{ Φ }}.
72
Proof.
73
  rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) [e]) //=; eauto.
74
  - by rewrite later_sep -(wp_value _ _ (Lit _)) // big_sepL_singleton.
75
  - intros; inv_head_step; eauto.
76
Qed.
77

78
Lemma wp_rec E f x erec e1 e2 Φ :
79
  e1 = Rec f x erec 
80
  is_Some (to_val e2) 
81
  Closed (f :b: x :b: []) erec 
Robbert Krebbers's avatar
Robbert Krebbers committed
82
   WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }}  WP App e1 e2 @ E {{ Φ }}.
83
Proof.
84
  intros -> [v2 ?] ?. rewrite -(wp_lift_pure_det_head_step_no_fork (App _ _)
85
    (subst' x e2 (subst' f (Rec f x erec) erec))); eauto.
86
  intros; inv_head_step; eauto.
87
Qed.
88

89 90 91
Lemma wp_un_op E op e v v' Φ :
  to_val e = Some v 
  un_op_eval op v = Some v' 
92
   Φ v'  WP UnOp op e @ E {{ Φ }}.
93
Proof.
94
  intros. rewrite -(wp_lift_pure_det_head_step_no_fork (UnOp op _) (of_val v'))
95
    -?wp_value'; eauto.
96
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
97
Qed.
98

99 100 101
Lemma wp_bin_op E op e1 e2 v1 v2 v' Φ :
  to_val e1 = Some v1  to_val e2 = Some v2 
  bin_op_eval op v1 v2 = Some v' 
102
   (Φ v')  WP BinOp op e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
103
Proof.
104
  intros. rewrite -(wp_lift_pure_det_head_step_no_fork (BinOp op _ _) (of_val v'))
105
    -?wp_value'; eauto.
106
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
107
Qed.
108

109
Lemma wp_if_true E e1 e2 Φ :
110
   WP e1 @ E {{ Φ }}  WP If (Lit (LitBool true)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
111
Proof.
112
  apply wp_lift_pure_det_head_step_no_fork; eauto.
113
  intros; inv_head_step; eauto.
114 115
Qed.

116
Lemma wp_if_false E e1 e2 Φ :
117
   WP e2 @ E {{ Φ }}  WP If (Lit (LitBool false)) e1 e2 @ E {{ Φ }}.
118
Proof.
119
  apply wp_lift_pure_det_head_step_no_fork; eauto.
120
  intros; inv_head_step; eauto.
121
Qed.
122

123 124
Lemma wp_fst E e1 v1 e2 Φ :
  to_val e1 = Some v1  is_Some (to_val e2) 
125
   Φ v1  WP Fst (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
126
Proof.
127
  intros ? [v2 ?].
128
  rewrite -(wp_lift_pure_det_head_step_no_fork (Fst _) e1) -?wp_value; eauto.
129
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
130
Qed.
131

132 133
Lemma wp_snd E e1 e2 v2 Φ :
  is_Some (to_val e1)  to_val e2 = Some v2 
134
   Φ v2  WP Snd (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
135
Proof.
136
  intros [v1 ?] ?.
137
  rewrite -(wp_lift_pure_det_head_step_no_fork (Snd _) e2) -?wp_value; eauto.
138
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
139
Qed.
140

141 142
Lemma wp_case_inl E e0 e1 e2 Φ :
  is_Some (to_val e0) 
143
   WP App e1 e0 @ E {{ Φ }}  WP Case (InjL e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
144
Proof.
145
  intros [v0 ?].
146
  rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e1 e0)); eauto.
147
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
148
Qed.
149

150 151
Lemma wp_case_inr E e0 e1 e2 Φ :
  is_Some (to_val e0) 
152
   WP App e2 e0 @ E {{ Φ }}  WP Case (InjR e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
153
Proof.
154
  intros [v0 ?].
155
  rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e2 e0)); eauto.
156
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
157
Qed.
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

(** Heap *)
Lemma wp_alloc E e v :
  to_val e = Some v 
  {{{ True }}} Alloc e @ E {{{ l, RET LitV (LitLoc l); l  v }}}.
Proof.
  iIntros (<-%of_to_val Φ) "HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>"; iSplit; first by auto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_load E l q v :
  {{{  l {q} v }}} Load (Lit (LitLoc l)) @ E {{{ RET v; l {q} v }}}.
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_store E l v' e v :
  to_val e = Some v 
  {{{  l  v' }}} Store (Lit (LitLoc l)) e @ E {{{ RET LitV LitUnit; l  v }}}.
Proof.
  iIntros (<-%of_to_val Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
  iModIntro. iSplit=>//. by iApply "HΦ".
Qed.

Lemma wp_cas_fail E l q v' e1 v1 e2 v2 :
  to_val e1 = Some v1  to_val e2 = Some v2  v'  v1 
  {{{  l {q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ E
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
  iIntros (<-%of_to_val <-%of_to_val ? Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_cas_suc E l e1 v1 e2 v2 :
  to_val e1 = Some v1  to_val e2 = Some v2 
  {{{  l  v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ E
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
  iIntros (<-%of_to_val <-%of_to_val Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
  iModIntro. iSplit=>//. by iApply "HΦ".
Qed.
End rules.