logic.tex 20 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Language}
2

Ralf Jung's avatar
Ralf Jung committed
3
A \emph{language} $\Lang$ consists of a set \textdom{Exp} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
4
\begin{itemize}
Ralf Jung's avatar
Ralf Jung committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{()})\]
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, ()$. \\
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr'$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr'$ is forked off.
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
\item There is a predicate defining \emph{atomic} expressions satisfying
\let\oldcr\cr
\begin{mathpar}
  {\All\expr. \atomic(\expr) \Ra \toval(\expr) = \bot} \and
  {{
    \begin{inbox}
\All\expr_1, \state_1, \expr_2, \state_2, \expr'. \atomic(\expr_1) \land \expr_1, \state_1 \step \expr_2, \state_2, \expr' \Ra {}\\\qquad\qquad\qquad\quad~~ \Exists \val_2. \toval(\expr_2) = \val_2
    \end{inbox}
}}
\end{mathpar}
In other words, atomic expression \emph{reduce in one step to a value}.
It does not matter whether they fork off an arbitrary expression.
25 26
\end{itemize}

Ralf Jung's avatar
Ralf Jung committed
27 28 29
\subsection{The concurrent language}

For any language $\Lang$, we define the corresponding thread-pool semantics.
30 31 32

\paragraph{Machine syntax}
\[
Ralf Jung's avatar
Ralf Jung committed
33
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Exp}^n
34 35
\]

Ralf Jung's avatar
Ralf Jung committed
36 37
\judgment{Machine reduction} {\cfg{\tpool}{\state} \step
  \cfg{\tpool'}{\state'}}
38 39
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
40 41 42 43 44 45 46
  {\expr_1, \state_1 \step \expr_2, \state_2, \expr' \and \expr' \neq ()}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr']}{\state'}}
\and\infer
  {\expr_1, \state_1 \step \expr_2, \state_2}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool'}{\state'}}
47 48
\end{mathpar}

49
\clearpage
Ralf Jung's avatar
Ralf Jung committed
50 51 52 53 54 55 56
\section{The logic}

To instantiate Iris, you need to define the following parameters:
\begin{itemize}
\item A language $\Lang$
\item A locally contractive functor $\iFunc : \COFEs \to \CMRAs$ defining the ghost state
\end{itemize}
57

Ralf Jung's avatar
Ralf Jung committed
58 59 60
\noindent
As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
61
\[
Ralf Jung's avatar
Ralf Jung committed
62
	\SigType \supseteq \{ \textsort{Val}, \textsort{Expr}, \textsort{State}, \textsort{M}, \textsort{InvName}, \textsort{InvMask}, \Prop \}
63
\]
Ralf Jung's avatar
Ralf Jung committed
64 65 66
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
67 68 69 70 71
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.
Ralf Jung's avatar
Ralf Jung committed
72 73 74 75 76 77

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}
78 79

\paragraph{Syntax.}
Ralf Jung's avatar
Ralf Jung committed
80
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\textdom{Var}$ of variables (ranged over by metavariables $x$, $y$, $z$):
81

82
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
83 84 85 86 87 88
  \type ::={}&
      \sigtype \mid
      \unitsort \mid
      \type \times \type \mid
      \type \to \type
\\[0.4em]
89
  \term, \prop, \pred ::={}&
90
      \var \mid
91
      \sigfn(\term_1, \dots, \term_n) \mid
92
      \unitval \mid
93 94
      (\term, \term) \mid
      \pi_i\; \term \mid
95
      \Lam \var:\type.\term \mid
Ralf Jung's avatar
Ralf Jung committed
96
      \term(\term)  \mid
97 98 99 100 101
      \munit \mid
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
Ralf Jung's avatar
Ralf Jung committed
102
    \term =_\type \term \mid
103 104 105 106 107 108
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
109
    \MU \var:\type. \pred  \mid
Ralf Jung's avatar
Ralf Jung committed
110 111
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
112 113 114 115 116 117 118
\\&
    \knowInv{\term}{\prop} \mid
    \ownGGhost{\term} \mid
    \ownPhys{\term} \mid
    \always\prop \mid
    {\later\prop} \mid
    \pvsA{\prop}{\term}{\term} \mid
Ralf Jung's avatar
Ralf Jung committed
119
    \dynA{\term}{\pred}{\term}
120
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
121
Recursive predicates must be \emph{guarded}: in $\MU \var. \pred$, the variable $\var$ can only appear under the later $\later$ modality.
122

123 124
Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.

125
\paragraph{Metavariable conventions.}
Ralf Jung's avatar
Ralf Jung committed
126
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
127 128
\[
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
129
 \text{metavariable} & \text{type} \\\hline
130 131 132 133 134 135 136
  \term, \termB & \text{arbitrary} \\
  \val, \valB & \textsort{Val} \\
  \expr & \textsort{Exp} \\
  \state & \textsort{State} \\
\end{array}
\qquad\qquad
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
137
 \text{metavariable} & \text{type} \\\hline
138 139
  \iname & \textsort{InvName} \\
  \mask & \textsort{InvMask} \\
Ralf Jung's avatar
Ralf Jung committed
140
  \melt, \meltB & \textsort{M} \\
141
  \prop, \propB, \propC & \Prop \\
Ralf Jung's avatar
Ralf Jung committed
142
  \pred, \predB, \predC & \type\to\Prop \text{ (when $\type$ is clear from context)} \\
143 144 145 146
\end{array}
\]

\paragraph{Variable conventions.}
147
We often abuse notation, using the preceding \emph{term} meta-variables to range over (bound) \emph{variables}.
148
We omit type annotations in binders, when the type is clear from context.
Ralf Jung's avatar
Ralf Jung committed
149
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
150 151 152 153 154


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
Ralf Jung's avatar
Ralf Jung committed
155
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.
156

Ralf Jung's avatar
Ralf Jung committed
157 158
A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.
159

Ralf Jung's avatar
Ralf Jung committed
160
\judgment{Well-typed terms}{\vctx \proves_\Sig \wtt{\term}{\type}}
161 162
\begin{mathparpagebreakable}
%%% variables and function symbols
Ralf Jung's avatar
Ralf Jung committed
163
	\axiom{x : \type \proves \wtt{x}{\type}}
164
\and
Ralf Jung's avatar
Ralf Jung committed
165 166
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
167
\and
Ralf Jung's avatar
Ralf Jung committed
168 169
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
170
\and
Ralf Jung's avatar
Ralf Jung committed
171 172
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
173 174 175 176 177 178 179 180 181 182 183
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
184
	\axiom{\vctx \proves \wtt{\unitval}{\unitsort}}
185
\and
Ralf Jung's avatar
Ralf Jung committed
186 187
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
188
\and
Ralf Jung's avatar
Ralf Jung committed
189 190
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
191 192
%%% functions
\and
Ralf Jung's avatar
Ralf Jung committed
193 194
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
195 196
\and
	\infer
Ralf Jung's avatar
Ralf Jung committed
197 198
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
199 200
%%% monoids
\and
201
	\infer{}{\vctx \proves \wtt{\munit}{\textsort{M} \to \textsort{M}}}
202
\and
Ralf Jung's avatar
Ralf Jung committed
203 204
	\infer{\vctx \proves \wtt{\melt}{\textsort{M}} \and \vctx \proves \wtt{\meltB}{\textsort{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textsort{M}}}
205 206 207 208 209 210
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
Ralf Jung's avatar
Ralf Jung committed
211 212
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
230 231
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
232
	}{
233
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
234 235
	}
\and
Ralf Jung's avatar
Ralf Jung committed
236 237
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
238
\and
Ralf Jung's avatar
Ralf Jung committed
239 240
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
241 242 243 244 245 246 247 248
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
		\vctx \proves \wtt{\iname}{\textsort{InvName}}
	}{
		\vctx \proves \wtt{\knowInv{\iname}{\prop}}{\Prop}
	}
\and
Ralf Jung's avatar
Ralf Jung committed
249
	\infer{\vctx \proves \wtt{\melt}{\textsort{M}}}
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
		{\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\state}{\textsort{State}}}
		{\vctx \proves \wtt{\ownPhys{\state}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
		\vctx \proves \wtt{\mask}{\textsort{InvMask}} \and
		\vctx \proves \wtt{\mask'}{\textsort{InvMask}}
	}{
		\vctx \proves \wtt{\pvsA{\prop}{\mask}{\mask'}}{\Prop}
	}
\and
	\infer{
		\vctx \proves \wtt{\expr}{\textsort{Exp}} \and
		\vctx \proves \wtt{\pred}{\textsort{Val} \to \Prop} \and
		\vctx \proves \wtt{\mask}{\textsort{InvMask}}
	}{
		\vctx \proves \wtt{\dynA{\expr}{\pred}{\mask}}{\Prop}
	}
\end{mathparpagebreakable}

Ralf Jung's avatar
Ralf Jung committed
278
\subsection{Timeless propositions}
Ralf Jung's avatar
Ralf Jung committed
279 280 281

Some propositions are \emph{timeless}, which intuitively means that step-indexing does not affect them.
This is a \emph{meta-level} assertions about propositions, defined by the following judgment.
282

Ralf Jung's avatar
Ralf Jung committed
283
\judgment{Timeless Propositions}{\timeless{P}}
284

Ralf Jung's avatar
Ralf Jung committed
285 286
\ralf{Define a judgment that defines them.}

Ralf Jung's avatar
Ralf Jung committed
287
\subsection{Proof rules}
Ralf Jung's avatar
Ralf Jung committed
288

289 290 291 292 293
The judgment $\vctx \mid \pfctx \proves \prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Axioms $\prop \Ra \propB$ stand for judgments $\vctx \mid \cdot \proves \prop \Ra \propB$ with no assumptions.
(Bi-implications are analogous.)

294
\judgment{}{\vctx \mid \pfctx \proves \prop}
Ralf Jung's avatar
Ralf Jung committed
295
\paragraph{Laws of intuitionistic higher-order logic.}
296
This is entirely standard.
297 298
\begin{mathparpagebreakable}
\infer[Asm]
299 300 301
  {\prop \in \pfctx}
  {\pfctx \proves \prop}
\and
302
\infer[Eq]
303 304
  {\pfctx \proves \prop \\ \pfctx \proves \term =_\type \term'}
  {\pfctx \proves \prop[\term'/\term]}
305
\and
306 307 308 309 310 311 312 313 314 315 316 317
\infer[Refl]
  {}
  {\pfctx \proves \term =_\type \term}
\and
\infer[$\bot$E]
  {\pfctx \proves \FALSE}
  {\pfctx \proves \prop}
\and
\infer[$\top$I]
  {}
  {\pfctx \proves \TRUE}
\and
318
\infer[$\wedge$I]
319 320 321
  {\pfctx \proves \prop \\ \pfctx \proves \propB}
  {\pfctx \proves \prop \wedge \propB}
\and
322
\infer[$\wedge$EL]
323 324 325
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \prop}
\and
326
\infer[$\wedge$ER]
327 328 329
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \propB}
\and
330
\infer[$\vee$IL]
331 332 333
  {\pfctx \proves \prop }
  {\pfctx \proves \prop \vee \propB}
\and
334
\infer[$\vee$IR]
335 336 337
  {\pfctx \proves \propB}
  {\pfctx \proves \prop \vee \propB}
\and
338 339 340 341 342 343
\infer[$\vee$E]
  {\pfctx \proves \prop \vee \propB \\
   \pfctx, \prop \proves \propC \\
   \pfctx, \propB \proves \propC}
  {\pfctx \proves \propC}
\and
344
\infer[$\Ra$I]
345 346 347
  {\pfctx, \prop \proves \propB}
  {\pfctx \proves \prop \Ra \propB}
\and
348
\infer[$\Ra$E]
349 350 351
  {\pfctx \proves \prop \Ra \propB \\ \pfctx \proves \prop}
  {\pfctx \proves \propB}
\and
352 353 354
\infer[$\forall$I]
  { \vctx,\var : \type\mid\pfctx \proves \prop}
  {\vctx\mid\pfctx \proves \forall \var: \type.\; \prop}
355
\and
356 357 358 359
\infer[$\forall$E]
  {\vctx\mid\pfctx \proves \forall \var :\type.\; \prop \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \prop[\term/\var]}
360
\and
361 362 363 364
\infer[$\exists$I]
  {\vctx\mid\pfctx \proves \prop[\term/\var] \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \exists \var: \type. \prop}
365
\and
366 367 368 369
\infer[$\exists$E]
  {\vctx\mid\pfctx \proves \exists \var: \type.\; \prop \\
   \vctx,\var : \type\mid\pfctx , \prop \proves \propB}
  {\vctx\mid\pfctx \proves \propB}
370
\and
371 372 373
\infer[$\lambda$]
  {}
  {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
374
\and
375 376 377 378
\infer[$\mu$]
  {}
  {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
\end{mathparpagebreakable}
379

Ralf Jung's avatar
Ralf Jung committed
380
\paragraph{Laws of (affine) bunched implications.}
381 382
\begin{mathpar}
\begin{array}{rMcMl}
383
  \TRUE * \prop &\Lra& \prop \\
384
  \prop * \propB &\Lra& \propB * \prop \\
385
  (\prop * \propB) * \propC &\Lra& \prop * (\propB * \propC)
386 387
\end{array}
\and
388
\infer[$*$-mono]
389 390 391
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
392
\and
393
\inferB[$\wand$I-E]
394 395
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
396 397
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
398
\paragraph{Laws for ghosts and physical resources.}
399 400 401
\begin{mathpar}
\begin{array}{rMcMl}
\ownGGhost{\melt} * \ownGGhost{\meltB} &\Lra&  \ownGGhost{\melt \mtimes \meltB} \\
402 403
%\TRUE &\Ra&  \ownGGhost{\munit}\\
\ownGGhost{\melt} &\Ra& \melt \in \mval % * \ownGGhost{\melt}
404 405 406
\end{array}
\and
\begin{array}{c}
407
\ownPhys{\state} * \ownPhys{\state'} \Ra \FALSE
408 409 410
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
411
\paragraph{Laws for the later modality.}
412
\begin{mathpar}
413
\infer[$\later$-mono]
414 415 416
  {\pfctx \proves \prop}
  {\pfctx \proves \later{\prop}}
\and
417 418 419
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
420
\and
421 422 423 424 425
\infer[$\later$-$\exists$]
  {\text{$\type$ is inhabited}}
  {\later{\Exists x:\type.\prop} \proves \Exists x:\type. \later\prop}
\\\\
\begin{array}[c]{rMcMl}
426 427 428 429
  \later{(\prop \wedge \propB)} &\Lra& \later{\prop} \wedge \later{\propB}  \\
  \later{(\prop \vee \propB)} &\Lra& \later{\prop} \vee \later{\propB} \\
\end{array}
\and
430
\begin{array}[c]{rMcMl}
431
  \later{\All x.\prop} &\Lra& \All x. \later\prop \\
432
  \Exists x. \later\prop &\Ra& \later{\Exists x.\prop}  \\
433 434 435 436
  \later{(\prop * \propB)} &\Lra& \later\prop * \later\propB
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
437
\paragraph{Laws for the always modality.}
438
\begin{mathpar}
439
\infer[$\always$I]
440 441 442
  {\always{\pfctx} \proves \prop}
  {\always{\pfctx} \proves \always{\prop}}
\and
443 444 445 446 447 448 449
\infer[$\always$E]{}
  {\always{\prop} \Ra \prop}
\and
\begin{array}[c]{rMcMl}
  \always{(\prop * \propB)} &\Ra& \always{(\prop \land \propB)} \\
  \always{\prop} * \propB &\Ra& \always{\prop} \land \propB \\
  \always{\later\prop} &\Lra& \later\always{\prop} \\
450 451
\end{array}
\and
452
\begin{array}[c]{rMcMl}
453 454 455 456 457 458 459
  \always{(\prop \land \propB)} &\Lra& \always{\prop} \land \always{\propB} \\
  \always{(\prop \lor \propB)} &\Lra& \always{\prop} \lor \always{\propB} \\
  \always{\All x. \prop} &\Lra& \All x. \always{\prop} \\
  \always{\Exists x. \prop} &\Lra& \Exists x. \always{\prop} \\
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
460
\paragraph{Laws of primitive view shifts.}
461
~\\\ralf{Add these.}
462

Ralf Jung's avatar
Ralf Jung committed
463
\paragraph{Laws of weakest preconditions.}
464
~\\\ralf{Add these.}
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
\subsection{Lifting of operational semantics}\label{sec:lifting}
~\\\ralf{Add this.}

% The following lemmas help in proving axioms for a particular language.
% The first applies to expressions with side-effects, and the second to side-effect-free expressions.
% \dave{Update the others, and the example, wrt the new treatment of $\predB$.}
% \begin{align*}
%  &\All \expr, \state, \pred, \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \expr', \state'. \cfg{\state}{\expr} \step \cfg{\state'}{\expr'} \implies \pred(\expr', \state')) \implies \\
%  &{} \proves \bigl( (\All \expr', \state'. \pred (\expr', \state') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{ \later \prop * \ownPhys{\state} }{\expr}{\Ret\val. \propB}[\mask] \bigr) \\
%  \quad\\
%  &\All \expr, \pred, \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \pred(\expr_2)) \implies \\
%  &{} \proves \bigl( (\All \expr'. \pred(\expr') \Ra \hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask]) \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] \bigr)
% \end{align*}
% Note that $\pred$ is a meta-logic predicate---it does not depend on any world or resources being owned.

% The following specializations cover all cases of a heap-manipulating lambda calculus like $F_{\mu!}$.
% \begin{align*}
%  &\All \expr, \expr', \prop, \propB, \mask. \\
%  &\textlog{reducible}(e) \implies \\
%  &(\All \state, \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \state_2 = \state \land \expr_2 = \expr') \implies \\
%  &{} \proves (\hoare{\prop}{\expr'}{\Ret\val. \propB}[\mask] \Ra \hoare{\later\prop}{\expr}{\Ret\val. \propB}[\mask] ) \\
%  \quad \\
%  &\All \expr, \state, \pred, \mask. \\
%  &\textlog{atomic}(e) \implies \\
%  &\bigl(\All \expr_2, \state_2. \cfg{\state}{\expr} \step \cfg{\state_2}{\expr_2} \implies \pred(\expr_2, \state_2)\bigr) \implies \\
%  &{} \proves (\hoare{ \ownPhys{\state} }{\expr}{\Ret\val. \Exists\state'. \ownPhys{\state'} \land \pred(\val, \state') }[\mask] )
% \end{align*}
% The first is restricted to deterministic pure reductions, like $\beta$-reduction.
% The second is suited to proving triples for (possibly non-deterministic) atomic expressions; for example, with $\expr \eqdef \;!\ell$ (dereferencing $\ell$) and $\state \eqdef h \mtimes \ell \mapsto \valB$ and $\pred(\val, \state') \eqdef \state' = (h \mtimes \ell \mapsto \valB) \land \val = \valB$, one obtains the axiom $\All h, \ell, \valB. \hoare{\ownPhys{h \mtimes \ell \mapsto \valB}}{!\ell}{\Ret\val. \val = \valB \land \ownPhys{h \mtimes \ell \mapsto \valB} }$.
% %Axioms for CAS-like operations can be obtained by first deriving rules for the two possible cases, and then using the disjunction rule.


\subsection{Adequacy}
~\\\ralf{Check if this is still accurate. Port to weakest-pre.}

The adequacy statement reads as follows:
\begin{align*}
 &\All \mask, \expr, \val, \pred, i, \state, \state', \tpool'.
 \\&( \proves \hoare{\ownPhys\state}{\expr}{x.\; \pred(x)}[\mask]) \implies
 \\&\cfg{\state}{[i \mapsto \expr]} \step^\ast
     \cfg{\state'}{[i \mapsto \val] \uplus \tpool'} \implies
     \\&\pred(\val)
\end{align*}
where $\pred$ can mention neither resources nor invariants.


% RJ: If we want this section back, we should port it to primitive view shifts and prove it in Coq.
% \subsection{Unsound rules}

% Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
% \begin{mathpar}
% 	\infer
% 	{P \vs Q}
% 	{\later P \vs \later Q}
% 	\and
% 	\infer
% 	{\later(P \vs Q)}
% 	{\later P \vs \later Q}
% \end{mathpar}

% Of course, the second rule implies the first, so let's focus on that.
% Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
% If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
% We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
% We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
% We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.




540 541 542 543
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: