heap.v 8.68 KB
Newer Older
1
From heap_lang Require Export lifting.
2
From algebra Require Import upred_big_op.
3
From program_logic Require Export invariants ghost_ownership.
4 5 6 7 8 9
From program_logic Require Import ownership auth.
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
   a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
   predicates over finmaps instead of just ownP. *)

10 11
Definition heapRA : cmraT := mapRA loc (exclRA (leibnizC val)).
Definition heapGF : iFunctor := authGF heapRA.
12

13 14 15 16 17 18
Class heapG Σ := HeapG {
  heap_inG : inG heap_lang Σ (authRA heapRA);
  heap_name : gname
}.
Instance heap_authG `{i : heapG Σ} : authG heap_lang Σ heapRA :=
  {| auth_inG := heap_inG |}.
19

20
Definition to_heap : state  heapRA := fmap Excl.
21
Definition of_heap : heapRA  state := omap (maybe Excl).
22

23 24
(* heap_mapsto is defined strongly opaquely, to prevent unification from
matching it against other forms of ownership. *)
25
Definition heap_mapsto `{heapG Σ} (l : loc) (v: val) : iPropG heap_lang Σ :=
26
  auth_own heap_name {[ l := Excl v ]}.
27
Typeclasses Opaque heap_mapsto.
28

29 30 31 32 33
Definition heap_inv `{i : heapG Σ} (h : heapRA) : iPropG heap_lang Σ :=
  ownP (of_heap h).
Definition heap_ctx `{i : heapG Σ} (N : namespace) : iPropG heap_lang Σ :=
  auth_ctx heap_name N heap_inv.

34
Notation "l ↦ v" := (heap_mapsto l v) (at level 20) : uPred_scope.
35

36
Section heap.
37
  Context {Σ : iFunctorG}.
38
  Implicit Types N : namespace.
39 40
  Implicit Types P Q : iPropG heap_lang Σ.
  Implicit Types Φ : val  iPropG heap_lang Σ.
41 42
  Implicit Types σ : state.
  Implicit Types h g : heapRA.
43

44
  (** Conversion to heaps and back *)
45
  Global Instance of_heap_proper : Proper (() ==> (=)) of_heap.
46
  Proof. solve_proper. Qed.
47
  Lemma from_to_heap σ : of_heap (to_heap σ) = σ.
48
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
49 50 51
    apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
  Qed.
  Lemma to_heap_valid σ :  to_heap σ.
52
  Proof. intros l. rewrite lookup_fmap. by case (σ !! l). Qed.
53
  Lemma of_heap_insert l v h : of_heap (<[l:=Excl v]> h) = <[l:=v]> (of_heap h).
54
  Proof. by rewrite /of_heap -(omap_insert _ _ _ (Excl v)). Qed.
55 56
  Lemma to_heap_insert l v σ : to_heap (<[l:=v]> σ) = <[l:=Excl v]> (to_heap σ).
  Proof. by rewrite /to_heap -fmap_insert. Qed.
57 58
  Lemma of_heap_None h l :
     h  of_heap h !! l = None  h !! l = None  h !! l  Some ExclUnit.
59
  Proof.
60
    move=> /(_ l). rewrite /of_heap lookup_omap.
61 62 63
    by case: (h !! l)=> [[]|]; auto.
  Qed.
  Lemma heap_singleton_inv_l h l v :
64
     ({[l := Excl v]}  h)  h !! l = None  h !! l  Some ExclUnit.
65
  Proof.
66
    move=> /(_ l). rewrite lookup_op lookup_singleton.
67 68
    by case: (h !! l)=> [[]|]; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
69

70
  (** Allocation *)
71 72
  Lemma heap_alloc E N σ :
    authG heap_lang Σ heapRA  nclose N  E 
73
    ownP σ  (|={E}=>  _ : heapG Σ, heap_ctx N  Π★{map σ} heap_mapsto).
Ralf Jung's avatar
Ralf Jung committed
74
  Proof.
75
    intros. rewrite -{1}(from_to_heap σ). etrans.
76
    { rewrite [ownP _]later_intro.
77 78
      apply (auth_alloc (ownP  of_heap) E N (to_heap σ)); last done.
      apply to_heap_valid. }
79 80
    apply pvs_mono, exist_elim=> γ.
    rewrite -(exist_intro (HeapG _ _ γ)); apply and_mono_r.
81
    rewrite /heap_mapsto /heap_name.
82 83 84 85 86
    induction σ as [|l v σ Hl IH] using map_ind.
    { rewrite big_sepM_empty; apply True_intro. }
    rewrite to_heap_insert big_sepM_insert //.
    rewrite (map_insert_singleton_op (to_heap σ));
      last rewrite lookup_fmap Hl; auto.
Ralf Jung's avatar
Ralf Jung committed
87
    (* FIXME: investigate why we have to unfold auth_own here. *)
88
    by rewrite auth_own_op IH. 
Ralf Jung's avatar
Ralf Jung committed
89
  Qed.
Ralf Jung's avatar
Ralf Jung committed
90

91 92 93 94
  Context `{heapG Σ}.

  (** Propers *)
  Global Instance heap_inv_proper : Proper (() ==> ()) heap_inv.
95
  Proof. solve_proper. Qed.
96 97

  (** General properties of mapsto *)
98
  Lemma heap_mapsto_disjoint l v1 v2 : (l  v1  l  v2)%I  False.
99
  Proof.
100
    rewrite -auth_own_op auth_own_valid map_op_singleton.
101 102 103 104
    rewrite map_validI (forall_elim l) lookup_singleton.
    by rewrite option_validI excl_validI.
  Qed.

105
  (** Weakest precondition *)
106
  Lemma wp_alloc N E e v P Φ :
107 108
    to_val e = Some v 
    P  heap_ctx N  nclose N  E 
109
    P  (  l, l  v - Φ (LocV l)) 
110
    P  || Alloc e @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
111
  Proof.
112
    rewrite /heap_ctx /heap_inv=> ??? HP.
113
    trans (|={E}=> auth_own heap_name   P)%I.
114 115 116
    { by rewrite -pvs_frame_r -(auth_empty _ E) left_id. }
    apply wp_strip_pvs, (auth_fsa heap_inv (wp_fsa (Alloc e)))
      with N heap_name ; simpl; eauto with I.
117
    rewrite -later_intro. apply sep_mono_r,forall_intro=> h; apply wand_intro_l.
118
    rewrite -assoc left_id discrete_valid; apply const_elim_sep_l=> ?.
119
    rewrite -(wp_alloc_pst _ (of_heap h)) //.
120
    apply sep_mono_r; rewrite HP; apply later_mono.
Ralf Jung's avatar
Ralf Jung committed
121
    apply forall_mono=> l; apply wand_intro_l.
122
    rewrite always_and_sep_l -assoc; apply const_elim_sep_l=> ?.
123
    rewrite -(exist_intro (op {[ l := Excl v ]})).
124
    repeat erewrite <-exist_intro by apply _; simpl.
Ralf Jung's avatar
Ralf Jung committed
125
    rewrite -of_heap_insert left_id right_id.
126
    rewrite /heap_mapsto. ecancel [_ - Φ _]%I.
127
    rewrite -(map_insert_singleton_op h); last by apply of_heap_None.
128 129
    rewrite const_equiv ?left_id; last by apply (map_insert_valid h).
    apply later_intro.
130 131
  Qed.

132
  Lemma wp_load N E l v P Φ :
133
    P  heap_ctx N  nclose N  E 
134
    P  ( l  v   (l  v - Φ v)) 
135
    P  || Load (Loc l) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
136
  Proof.
137
    rewrite /heap_ctx /heap_inv=> ?? HPΦ.
138
    apply (auth_fsa' heap_inv (wp_fsa _) id)
139
      with N heap_name {[ l := Excl v ]}; simpl; eauto with I.
140
    rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
141
    rewrite -assoc discrete_valid; apply const_elim_sep_l=> ?.
142
    rewrite -(wp_load_pst _ (<[l:=v]>(of_heap h))) ?lookup_insert //.
143 144
    rewrite const_equiv // left_id.
    rewrite -(map_insert_singleton_op h); last by eapply heap_singleton_inv_l.
145
    rewrite -of_heap_insert.
146
    apply sep_mono_r, later_mono, wand_intro_l. by rewrite -later_intro.
Ralf Jung's avatar
Ralf Jung committed
147 148
  Qed.

149
  Lemma wp_store N E l v' e v P Φ :
150 151
    to_val e = Some v 
    P  heap_ctx N  nclose N  E 
152
    P  ( l  v'   (l  v - Φ (LitV LitUnit))) 
153
    P  || Store (Loc l) e @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
154
  Proof.
155
    rewrite /heap_ctx /heap_inv=> ??? HPΦ.
156
    apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v) l))
157
      with N heap_name {[ l := Excl v' ]}; simpl; eauto with I.
158
    rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
159
    rewrite -assoc discrete_valid; apply const_elim_sep_l=> ?.
160
    rewrite -(wp_store_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //.
161 162
    rewrite /heap_inv alter_singleton insert_insert.
    rewrite -!(map_insert_singleton_op h); try by eapply heap_singleton_inv_l.
163
    rewrite -!of_heap_insert const_equiv;
164 165
      last (split; [naive_solver|by eapply map_insert_valid, cmra_valid_op_r]).
    apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro.
Ralf Jung's avatar
Ralf Jung committed
166 167
  Qed.

168
  Lemma wp_cas_fail N E l v' e1 v1 e2 v2 P Φ :
Ralf Jung's avatar
Ralf Jung committed
169
    to_val e1 = Some v1  to_val e2 = Some v2  v'  v1 
170
    P  heap_ctx N  nclose N  E 
171
    P  ( l  v'   (l  v' - Φ (LitV (LitBool false)))) 
172
    P  || Cas (Loc l) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
173
  Proof.
174
    rewrite /heap_ctx /heap_inv=>????? HPΦ.
175
    apply (auth_fsa' heap_inv (wp_fsa _) id)
176
      with N heap_name {[ l := Excl v' ]}; simpl; eauto 10 with I.
177
    rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
178
    rewrite -assoc discrete_valid; apply const_elim_sep_l=> ?.
179
    rewrite -(wp_cas_fail_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //.
180 181
    rewrite const_equiv // left_id.
    rewrite -(map_insert_singleton_op h); last by eapply heap_singleton_inv_l.
182
    rewrite -of_heap_insert.
183
    apply sep_mono_r, later_mono, wand_intro_l. by rewrite -later_intro.
Ralf Jung's avatar
Ralf Jung committed
184
  Qed.
Ralf Jung's avatar
Ralf Jung committed
185

186
  Lemma wp_cas_suc N E l e1 v1 e2 v2 P Φ :
Ralf Jung's avatar
Ralf Jung committed
187
    to_val e1 = Some v1  to_val e2 = Some v2 
188
    P  heap_ctx N  nclose N  E 
189
    P  ( l  v1   (l  v2 - Φ (LitV (LitBool true)))) 
190
    P  || Cas (Loc l) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
191
  Proof.
192
    rewrite /heap_ctx /heap_inv=> ???? HPΦ.
193
    apply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Excl v2) l))
194
      with N heap_name {[ l := Excl v1 ]}; simpl; eauto 10 with I.
195
    rewrite HPΦ{HPΦ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
196
    rewrite -assoc discrete_valid; apply const_elim_sep_l=> ?.
197
    rewrite -(wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))) ?lookup_insert //.
198 199
    rewrite /heap_inv alter_singleton insert_insert.
    rewrite -!(map_insert_singleton_op h); try by eapply heap_singleton_inv_l.
200
    rewrite -!of_heap_insert const_equiv;
201 202
      last (split; [naive_solver|by eapply map_insert_valid, cmra_valid_op_r]).
    apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro.
Ralf Jung's avatar
Ralf Jung committed
203
  Qed.
204
End heap.