cmra.v 47.9 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Robbert Krebbers's avatar
Robbert Krebbers committed
3 4
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
5 6 7 8 9 10 11 12 13

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
14
Hint Extern 0 (_  _) => reflexivity.
15 16
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
17 18
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
19
Notation "✓{ n } x" := (validN n x)
20
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22 23
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
24
Notation "✓ x" := (valid x) (at level 20) : C_scope.
25

26
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Notation "x ≼{ n } y" := (includedN n x y)
28
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
29
Instance: Params (@includedN) 4.
30
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  (* setoids *)
34
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
37
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  (* valid *)
39
  mixin_cmra_valid_validN x :  x   n, {n} x;
40
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  (* monoid *)
42 43
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46 47
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  mixin_cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
48
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
49 50 51
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
53

Robbert Krebbers's avatar
Robbert Krebbers committed
54 55 56 57 58 59
(** Bundeled version *)
Structure cmraT := CMRAT {
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
60
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  cmra_op : Op cmra_car;
62
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
63
  cmra_validN : ValidN cmra_car;
64
  cmra_cofe_mixin : CofeMixin cmra_car;
65
  cmra_mixin : CMRAMixin cmra_car
Robbert Krebbers's avatar
Robbert Krebbers committed
66
}.
67
Arguments CMRAT _ {_ _ _ _ _ _ _} _ _.
68 69 70 71
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
72
Arguments cmra_pcore : simpl never.
73
Arguments cmra_op : simpl never.
74
Arguments cmra_valid : simpl never.
75 76 77
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Add Printing Constructor cmraT.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
Existing Instances cmra_pcore cmra_op cmra_valid cmra_validN.
80
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
81 82
Canonical Structure cmra_cofeC.

83 84 85 86 87 88
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90 91
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
92 93
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
94 95
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
96 97
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
98 99 100 101
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
102 103 104 105 106 107 108
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
  Proof. apply (mixin_cmra_pcore_preserving _ (cmra_mixin A)). Qed.
109 110
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
111
  Lemma cmra_extend n x y1 y2 :
112 113
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }.
114
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
115 116
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.

(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
136
(** * CMRAs with a unit element *)
137
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
138
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
139
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
140 141
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
142 143
  mixin_ucmra_unit_timeless : Timeless ;
  mixin_ucmra_pcore_unit : pcore   Some 
144
}.
145 146 147 148 149 150

Structure ucmraT := UCMRAT {
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
  ucmra_compl : Compl ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  ucmra_pcore : PCore ucmra_car;
152 153 154 155 156 157 158 159 160 161 162 163 164
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
  ucmra_cofe_mixin : CofeMixin ucmra_car;
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
  ucmra_mixin : UCMRAMixin ucmra_car
}.
Arguments UCMRAT _ {_ _ _ _ _ _ _ _} _ _ _.
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Arguments ucmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
Arguments ucmra_pcore : simpl never.
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
Arguments ucmra_cofe_mixin : simpl never.
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
Existing Instances ucmra_empty.
Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A).
Canonical Structure ucmra_cofeC.
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
  CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A).
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_timeless : Timeless ( : A).
  Proof. apply (mixin_ucmra_unit_timeless _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
190 191
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
192
End ucmra_mixin.
193

194
(** * Discrete CMRAs *)
195
Class CMRADiscrete (A : cmraT) := {
196 197 198 199
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
200
(** * Morphisms *)
201
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
  included_preserving x y : x  y  f x  f y
205
}.
206 207
Arguments validN_preserving {_ _} _ {_} _ _ _.
Arguments included_preserving {_ _} _ {_} _ _ _.
208

209
(** * Local updates *)
Ralf Jung's avatar
Ralf Jung committed
210 211
(** The idea is that lemams taking this class will usually have L explicit,
    and leave Lv implicit - it will be inferred by the typeclass machinery. *)
212 213 214
Class LocalUpdate {A : cmraT} (Lv : A  Prop) (L : A  A) := {
  local_update_ne n :> Proper (dist n ==> dist n) L;
  local_updateN n x y : Lv x  {n} (x  y)  L (x  y) {n} L x  y
215 216 217
}.
Arguments local_updateN {_ _} _ {_} _ _ _ _ _.

218
(** * Frame preserving updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
219 220
Definition cmra_updateP {A : cmraT} (x : A) (P : A  Prop) :=  n mz,
  {n} (x ? mz)   y, P y  {n} (y ? mz).
221
Instance: Params (@cmra_updateP) 1.
222
Infix "~~>:" := cmra_updateP (at level 70).
Robbert Krebbers's avatar
Robbert Krebbers committed
223 224 225

Definition cmra_update {A : cmraT} (x y : A) :=  n mz,
  {n} (x ? mz)  {n} (y ? mz).
226
Infix "~~>" := cmra_update (at level 70).
227
Instance: Params (@cmra_update) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
228

Robbert Krebbers's avatar
Robbert Krebbers committed
229
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
230
Section cmra.
231
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
Implicit Types x y z : A.
233
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
234

235
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
236 237 238 239 240 241 242 243 244
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
245
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
246 247 248
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
249
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
250 251 252 253
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
254 255 256 257 258 259 260 261
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
262 263 264 265
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
284 285 286 287
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
288 289 290
Global Instance cmra_updateP_proper :
  Proper (() ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
291 292 293 294 295 296 297
  rewrite /pointwise_relation /cmra_updateP=> x x' Hx P P' HP;
    split=> ? n mz; setoid_subst; naive_solver.
Qed.
Global Instance cmra_update_proper :
  Proper (() ==> () ==> iff) (@cmra_update A).
Proof.
  rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto.
298
Qed.
299

Robbert Krebbers's avatar
Robbert Krebbers committed
300 301 302 303
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

304
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
306 307 308
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
309
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
310
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
311 312 313
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
314
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
Lemma cmra_pcore_pcore x cx : pcore x = Some cx  cx  cx  cx.
Proof. eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_pcore' x cx : pcore x  Some cx  cx  cx  cx.
Proof. eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
335 336

(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
337 338
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
339
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
340
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
342
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Global Instance cmra_included_trans: Transitive (@included A _ _).
344
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
345
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
346
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
347
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
348
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
350
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
351

Robbert Krebbers's avatar
Robbert Krebbers committed
352
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
353
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
355 356 357 358 359 360 361
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
362
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
363
Lemma cmra_included_r x y : y  x  y.
364
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
365

Robbert Krebbers's avatar
Robbert Krebbers committed
366 367 368 369 370 371 372 373 374
Lemma cmra_pcore_preserving' x y cx :
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
  destruct (cmra_pcore_preserving x y cx') as (cy&->&?); auto.
  exists cy; by rewrite Hcx.
Qed.
Lemma cmra_pcore_preservingN' n x y cx :
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
376 377 378 379 380 381 382
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
  destruct (cmra_pcore_preserving x (x  z) cx')
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
384 385
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
386
Lemma cmra_preservingN_l n x y z : x {n} y  z  x {n} z  y.
387
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
388
Lemma cmra_preserving_l x y z : x  y  z  x  z  y.
389
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
390
Lemma cmra_preservingN_r n x y z : x {n} y  x  z {n} y  z.
391
Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
392
Lemma cmra_preserving_r x y z : x  y  x  z  y  z.
393
Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
394

Robbert Krebbers's avatar
Robbert Krebbers committed
395
Lemma cmra_included_dist_l n x1 x2 x1' :
396
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
397
Proof.
398 399
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
400
Qed.
401

Robbert Krebbers's avatar
Robbert Krebbers committed
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
(** ** Total core *)
Section total_core.
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
  Lemma cmra_core_preserving x y : x  y  core x  core y.
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
    destruct (cmra_pcore_preserving x y cx) as (cy&Hcy&?); auto.
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
  Lemma cmra_core_core x : core x  core x  core x.
  Proof. by rewrite -{2}(cmra_core_idemp x) cmra_core_r. Qed.
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Lemma cmra_core_preservingN n x y : x {n} y  core x {n} core y.
  Proof.
    intros [z ->].
    apply cmra_included_includedN, cmra_core_preserving, cmra_included_l.
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
470
(** ** Timeless *)
471
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
472 473
Proof.
  intros ?? [x' ?].
474
  destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
475
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
476
Qed.
477
Lemma cmra_timeless_included_r n x y : Timeless y  x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
478
Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed.
479
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
480
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
481 482
Proof.
  intros ??? z Hz.
483
  destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *.
484
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
485
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
486
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
487

488 489 490 491 492 493 494 495
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
496
  split; first by apply cmra_included_includedN.
497 498 499
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.

500
(** ** Local updates *)
501 502
Global Instance local_update_proper Lv (L : A  A) :
  LocalUpdate Lv L  Proper (() ==> ()) L.
503 504
Proof. intros; apply (ne_proper _). Qed.

505 506
Lemma local_update L `{!LocalUpdate Lv L} x y :
  Lv x   (x  y)  L (x  y)  L x  y.
507 508 509
Proof.
  by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L).
Qed.
510 511

Global Instance local_update_op x : LocalUpdate (λ _, True) (op x).
512
Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed.
513

Ralf Jung's avatar
Ralf Jung committed
514 515 516
Global Instance local_update_id : LocalUpdate (λ _, True) (@id A).
Proof. split; auto with typeclass_instances. Qed.

517
(** ** Updates *)
518
Lemma cmra_update_updateP x y : x ~~> y  x ~~>: (y =).
Robbert Krebbers's avatar
Robbert Krebbers committed
519
Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed.
520
Lemma cmra_updateP_id (P : A  Prop) x : P x  x ~~>: P.
Robbert Krebbers's avatar
Robbert Krebbers committed
521
Proof. intros ? n mz ?; eauto. Qed.
522
Lemma cmra_updateP_compose (P Q : A  Prop) x :
523
  x ~~>: P  ( y, P y  y ~~>: Q)  x ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
524
Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed.
525 526 527
Lemma cmra_updateP_compose_l (Q : A  Prop) x y : x ~~> y  y ~~>: Q  x ~~>: Q.
Proof.
  rewrite cmra_update_updateP.
Robbert Krebbers's avatar
Robbert Krebbers committed
528
  intros; apply cmra_updateP_compose with (y =); naive_solver.
529
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
530 531
Lemma cmra_updateP_weaken (P Q : A  Prop) x :
  x ~~>: P  ( y, P y  Q y)  x ~~>: Q.
532
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
533 534 535 536 537 538 539
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Proof.
  split.
  - intros x. by apply cmra_update_updateP, cmra_updateP_id.
  - intros x y z. rewrite !cmra_update_updateP.
    eauto using cmra_updateP_compose with subst.
Qed.
540

541
Lemma cmra_updateP_op (P1 P2 Q : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
542 543
  x1 ~~>: P1  x2 ~~>: P2  ( y1 y2, P1 y1  P2 y2  Q (y1  y2)) 
  x1  x2 ~~>: Q.
544
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
545 546 547 548 549 550
  intros Hx1 Hx2 Hy n mz ?.
  destruct (Hx1 n (Some (x2 ? mz))) as (y1&?&?).
  { by rewrite /= -cmra_opM_assoc. }
  destruct (Hx2 n (Some (y1 ? mz))) as (y2&?&?).
  { by rewrite /= -cmra_opM_assoc (comm _ x2) cmra_opM_assoc. }
  exists (y1  y2); split; last rewrite (comm _ y1) cmra_opM_assoc; auto.
551
Qed.
552
Lemma cmra_updateP_op' (P1 P2 : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
553 554
  x1 ~~>: P1  x2 ~~>: P2 
  x1  x2 ~~>: λ y,  y1 y2, y = y1  y2  P1 y1  P2 y2.
555
Proof. eauto 10 using cmra_updateP_op. Qed.
556
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1  x2 ~~> y2  x1  x2 ~~> y1  y2.
557
Proof.
558
  rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
559
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

Section total_updates.
  Context `{CMRATotal A}.

  Lemma cmra_total_updateP x (P : A  Prop) :
    x ~~>: P   n z, {n} (x  z)   y, P y  {n} (y  z).
  Proof.
    split=> Hup; [intros n z; apply (Hup n (Some z))|].
    intros n [z|] ?; simpl; [by apply Hup|].
    destruct (Hup n (core x)) as (y&?&?); first by rewrite cmra_core_r.
    eauto using cmra_validN_op_l.
  Qed.
  Lemma cmra_total_update x y : x ~~> y   n z, {n} (x  z)  {n} (y  z).
  Proof. rewrite cmra_update_updateP cmra_total_updateP. naive_solver. Qed.

  Context `{CMRADiscrete A}.

  Lemma cmra_discrete_updateP (x : A) (P : A  Prop) :
    x ~~>: P   z,  (x  z)   y, P y   (y  z).
  Proof.
    rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
  Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
    x ~~> y   z,  (x  z)   (y  z).
  Proof.
    rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
End total_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
590 591
End cmra.

592 593
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_inhabited : Inhabited A := populate .

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
    intros x. destruct (cmra_pcore_preserving'  x ) as (cx&->&?);
      eauto using ucmra_unit_least, (persistent ).
  Qed.
615

Robbert Krebbers's avatar
Robbert Krebbers committed
616 617 618 619 620 621
  Lemma ucmra_update_unit x : x ~~> .
  Proof.
    apply cmra_total_update=> n z. rewrite left_id; apply cmra_validN_op_r.
  Qed.
  Lemma ucmra_update_unit_alt y :  ~~> y   x, x ~~> y.
  Proof. split; [intros; trans |]; auto using ucmra_update_unit. Qed.
622
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
Hint Immediate cmra_unit_total.

(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }).
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
655

656
(** * Properties about monotone functions *)
657
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
658
Proof. repeat split; by try apply _. Qed.
659 660
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
661 662
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
663
  - apply _. 
664
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
665
  - move=> x y Hxy /=. by apply included_preserving, included_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
666
Qed.
667

668 669
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
670 671
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
  Lemma includedN_preserving n x y : x {n} y  f x {n} f y.
672
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
673
    intros [z ->].
674
    apply cmra_included_includedN, (included_preserving f), cmra_included_l.
675
  Qed.
676
  Lemma valid_preserving x :  x   f x.
677 678 679
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

680 681
(** Functors *)
Structure rFunctor := RFunctor {
682
  rFunctor_car : cofeT  cofeT  cmraT;
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
Structure urFunctor := URFunctor {
  urFunctor_car : cofeT  cofeT  ucmraT;
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A.
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

739 740 741 742 743 744 745 746 747 748 749 750 751
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
752
  Lemma cmra_transport_core x : T (core x) = core (T x).
753
  Proof. by destruct H. Qed.
754
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
755
  Proof. by destruct H. Qed.
756
  Lemma cmra_transport_valid x :  T x   x.
757 758 759
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
760 761
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
762 763 764 765 766 767 768 769
  Lemma cmra_transport_updateP (P : A  Prop) (Q : B  Prop) x :
    x ~~>: P  ( y, P y  Q (T y))  T x ~~>: Q.
  Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
  Lemma cmra_transport_updateP' (P : A  Prop) x :
    x ~~>: P  T x ~~>: λ y,  y', y = cmra_transport H y'  P y'.
  Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.

770 771
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
772
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
773
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
774 775 776 777
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
778
  (* monoid *)
779 780
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
781 782 783 784
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  ra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
785
  ra_valid_op_l x y :  (x  y)   x
786 787
}.

788
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
789
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
790 791
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
792

793
  Instance discrete_validN : ValidN A := λ n x,  x.
794
  Definition discrete_cmra_mixin : CMRAMixin A.
795
  Proof.
796
    destruct ra_mix; split; try done.
797
    - intros x; split; first done. by move=> /(_ 0).
798
    - intros n x y1 y2 ??; by exists (y1,y2).
799 800 801
  Qed.
End discrete.

802 803 804 805 806
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
Notation discreteLeibnizR A ra_mix :=
  (CMRAT A (@discrete_cofe_mixin _ equivL _) (discrete_cmra_mixin ra_mix)).

Robbert Krebbers's avatar
Robbert Krebbers committed
807
Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A,
808 809 810
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
Section ra_total.
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_proper :  (x : A), Proper (() ==> ()) (op x)).
  Context (core_proper: Proper (() ==> ()) (@core A _)).
  Context (valid_proper : Proper (() ==> impl) (@valid A _)).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (valid_op_l :  x y : A,  (x  y)   x).
  Lemma ra_total_mixin : RAMixin A.
  Proof.
    split; auto.
    - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End ra_total.

836 837 838
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
839
  Instance unit_validN : ValidN () := λ n x, True.
Robbert Krebbers's avatar
Robbert Krebbers committed
840
  Instance unit_pcore : PCore () := λ x, Some x.
841
  Instance unit_op : Op () := λ x y, ().
842
  Lemma unit_cmra_mixin : CMRAMixin ().
Robbert Krebbers's avatar
Robbert Krebbers committed
843
  Proof. apply cmra_total_mixin; try done. eauto. by exists ((),()). Qed.
844
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
845 846 847 848 849 850 851

  Instance unit_empty : Empty () := ().
  Lemma unit_ucmra_mixin : UCMRAMixin ().
  Proof. done. Qed.
  Canonical Structure unitUR : ucmraT :=
    UCMRAT () unit_cofe_mixin unit_cmra_mixin unit_ucmra_mixin.

852
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
853
  Proof. done. Qed.
854
  Global Instance unit_persistent (x : ()) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
855
  Proof. by constructor. Qed.
856
End unit.
857

858
(** ** Product *)
859 860
Section prod.
  Context {A B : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
861 862 863
  Local Arguments pcore _ _ !_ /.
  Local Arguments cmra_pcore _ !_/.

864
  Instance prod_op : Op (A * B) := λ x y, (x.1  y.1, x.2  y.2).
Robbert Krebbers's avatar
Robbert Krebbers committed
865 866 867
  Instance prod_pcore : PCore (A * B) := λ x,
    c1  pcore (x.1); c2  pcore (x.2); Some (c1, c2).
  Arguments prod_pcore !_ /.
868
  Instance prod_valid : Valid (A * B) := λ x,  x.1   x.2.
869
  Instance prod_validN : ValidN (A * B) := λ n x, {n} x.1  {n} x.2.
870

Robbert Krebbers's avatar
Robbert Krebbers committed
871 872 873 874 875 876 877 878 879 880 881 882
  Lemma prod_pcore_Some (x cx : A * B) :
    pcore x = Some cx  pcore (x.1) = Some (cx.1)  pcore (x.2) = Some (cx.2).
  Proof. destruct x, cx; by intuition simplify_option_eq. Qed.
  Lemma prod_pcore_Some' (x cx : A * B) :
    pcore x  Some cx  pcore (x.1)  Some (cx.1)  pcore (x.2)  Some (cx.2).
  Proof.
    split; [by intros (cx'&[-> ->]%prod_pcore_Some&->)%equiv_Some_inv_r'|].
    rewrite {3}/pcore /prod_pcore. (* TODO: use setoid rewrite *)
    intros [Hx1 Hx2]; inversion_clear Hx1; simpl; inversion_clear Hx2.
    by constructor.
  Qed.

883 884 885 886 887 888 889 890 891 892
  Lemma prod_included (x y : A * B) : x  y  x.1  y.1  x.2  y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
  Lemma prod_includedN (x y : A * B) n : x {n} y  x.1 {n} y.1  x.2 {n} y.2.
  Proof.
    split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|].
    intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto.
  Qed.
893

894 895 896
  Definition prod_cmra_mixin : CMRAMixin (A * B).
  Proof.
    split; try apply _.
897
    - by intros n x y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2.
Robbert Krebbers's avatar
Robbert Krebbers committed
898 899 900 901
    - intros n x y cx; setoid_rewrite prod_pcore_Some=> -[??] [??].
      destruct (cmra_pcore_ne n (x.1) (y.1) (cx.1)) as (z1&->&?); auto.
      destruct (cmra_pcore_ne n (x.2) (y.2) (cx.2)) as (z2&->&?); auto.
      exists (z1,z2); repeat constructor; auto.
902
    - by intros n y1 y2 [Hy1 Hy2] [??]; split; rewrite /= -?Hy1 -?Hy2.
903 904