upred_big_op.v 8.36 KB
Newer Older
1
From algebra Require Export upred.
2
From prelude Require Import gmap fin_collections.
3

4 5
(** * Big ops over lists *)
(* These are the basic building blocks for other big ops *)
6 7 8 9 10 11 12 13
Fixpoint uPred_big_and {M} (Ps : list (uPred M)) : uPred M:=
  match Ps with [] => True | P :: Ps => P  uPred_big_and Ps end%I.
Instance: Params (@uPred_big_and) 1.
Notation "'Π∧' Ps" := (uPred_big_and Ps) (at level 20) : uPred_scope.
Fixpoint uPred_big_sep {M} (Ps : list (uPred M)) : uPred M :=
  match Ps with [] => True | P :: Ps => P  uPred_big_sep Ps end%I.
Instance: Params (@uPred_big_sep) 1.
Notation "'Π★' Ps" := (uPred_big_sep Ps) (at level 20) : uPred_scope.
14

15 16
(** * Other big ops *)
(** We use a type class to obtain overloaded notations *)
17 18
Definition uPred_big_sepM {M} `{Countable K} {A}
    (m : gmap K A) (P : K  A  uPred M) : uPred M :=
19
  uPred_big_sep (curry P <$> map_to_list m).
20
Instance: Params (@uPred_big_sepM) 6.
21
Notation "'Π★{map' m } P" := (uPred_big_sepM m P)
22
  (at level 20, m at level 10, format "Π★{map  m }  P") : uPred_scope.
23

24 25 26
Definition uPred_big_sepS {M} `{Countable A}
  (X : gset A) (P : A  uPred M) : uPred M := uPred_big_sep (P <$> elements X).
Instance: Params (@uPred_big_sepS) 5.
27
Notation "'Π★{set' X } P" := (uPred_big_sepS X P)
28
  (at level 20, X at level 10, format "Π★{set  X }  P") : uPred_scope.
29 30

(** * Always stability for lists *)
31 32 33 34 35 36 37 38 39 40
Class AlwaysStableL {M} (Ps : list (uPred M)) :=
  always_stableL : Forall AlwaysStable Ps.
Arguments always_stableL {_} _ {_}.

Section big_op.
Context {M : cmraT}.
Implicit Types Ps Qs : list (uPred M).
Implicit Types A : Type.

(* Big ops *)
41
Global Instance big_and_proper : Proper (() ==> ()) (@uPred_big_and M).
42
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
43
Global Instance big_sep_proper : Proper (() ==> ()) (@uPred_big_sep M).
44
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
45 46 47 48 49 50 51 52 53 54 55 56 57

Global Instance big_and_ne n :
  Proper (Forall2 (dist n) ==> dist n) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_ne n :
  Proper (Forall2 (dist n) ==> dist n) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

Global Instance big_and_mono' : Proper (Forall2 () ==> ()) (@uPred_big_and M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
Global Instance big_sep_mono' : Proper (Forall2 () ==> ()) (@uPred_big_sep M).
Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

58
Global Instance big_and_perm : Proper (() ==> ()) (@uPred_big_and M).
59 60
Proof.
  induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
61 62 63
  - by rewrite IH.
  - by rewrite !assoc (comm _ P).
  - etransitivity; eauto.
64
Qed.
65
Global Instance big_sep_perm : Proper (() ==> ()) (@uPred_big_sep M).
66 67
Proof.
  induction 1 as [|P Ps Qs ? IH|P Q Ps|]; simpl; auto.
68 69 70
  - by rewrite IH.
  - by rewrite !assoc (comm _ P).
  - etransitivity; eauto.
71
Qed.
72

73
Lemma big_and_app Ps Qs : (Π (Ps ++ Qs))%I  (Π Ps  Π Qs)%I.
74
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
75
Lemma big_sep_app Ps Qs : (Π★ (Ps ++ Qs))%I  (Π★ Ps  Π★ Qs)%I.
76
Proof. by induction Ps as [|?? IH]; rewrite /= ?left_id -?assoc ?IH. Qed.
77 78 79 80 81 82 83 84 85 86

Lemma big_and_contains Ps Qs : Qs `contains` Ps  (Π Ps)%I  (Π Qs)%I.
Proof.
  intros [Ps' ->]%contains_Permutation. by rewrite big_and_app uPred.and_elim_l.
Qed.
Lemma big_sep_contains Ps Qs : Qs `contains` Ps  (Π★ Ps)%I  (Π★ Qs)%I.
Proof.
  intros [Ps' ->]%contains_Permutation. by rewrite big_sep_app uPred.sep_elim_l.
Qed.

87
Lemma big_sep_and Ps : (Π★ Ps)  (Π Ps).
88
Proof. by induction Ps as [|P Ps IH]; simpl; auto with I. Qed.
89

90
Lemma big_and_elem_of Ps P : P  Ps  (Π Ps)  P.
91
Proof. induction 1; simpl; auto with I. Qed.
92
Lemma big_sep_elem_of Ps P : P  Ps  (Π★ Ps)  P.
93 94
Proof. induction 1; simpl; auto with I. Qed.

95
(* Big ops over finite maps *)
96 97 98 99
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
  Implicit Types P : K  A  uPred M.
100

101 102 103
  Lemma big_sepM_mono P Q m1 m2 :
    m2  m1  ( x k, m2 !! k = Some x  P k x  Q k x) 
    (Π★{map m1} P)  (Π★{map m2} Q).
104
  Proof.
105 106 107 108
    intros HX HP. transitivity (Π★{map m2} P)%I.
    - by apply big_sep_contains, fmap_contains, map_to_list_contains.
    - apply big_sep_mono', Forall2_fmap, Forall2_Forall.
      apply Forall_forall=> -[i x] ? /=. by apply HP, elem_of_map_to_list.
109
  Qed.
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

  Global Instance big_sepM_ne m n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (dist n))
           (uPred_big_sepM (M:=M) m).
  Proof.
    intros P1 P2 HP. apply big_sep_ne, Forall2_fmap.
    apply Forall2_Forall, Forall_true=> -[i x]; apply HP.
  Qed.
  Global Instance big_sepM_proper m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (uPred_big_sepM (M:=M) m).
  Proof.
    intros P1 P2 HP; apply equiv_dist=> n.
    apply big_sepM_ne=> k x; apply equiv_dist, HP.
  Qed.
  Global Instance big_sepM_mono' m :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> ())
           (uPred_big_sepM (M:=M) m).
  Proof. intros P1 P2 HP. apply big_sepM_mono; intros; [done|apply HP]. Qed.

  Lemma big_sepM_empty P : (Π★{map } P)%I  True%I.
  Proof. by rewrite /uPred_big_sepM map_to_list_empty. Qed.
  Lemma big_sepM_insert P (m : gmap K A) i x :
    m !! i = None  (Π★{map <[i:=x]> m} P)%I  (P i x  Π★{map m} P)%I.
  Proof. intros ?; by rewrite /uPred_big_sepM map_to_list_insert. Qed.
  Lemma big_sepM_singleton P i x : (Π★{map {[i := x]}} P)%I  (P i x)%I.
136 137 138 139
  Proof.
    rewrite -insert_empty big_sepM_insert/=; last auto using lookup_empty.
    by rewrite big_sepM_empty right_id.
  Qed.
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
End gmap.

(* Big ops over finite sets *)
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
  Implicit Types P : A  uPred M.

  Lemma big_sepS_mono P Q X Y :
    Y  X  ( x, x  Y  P x  Q x)  (Π★{set X} P)  (Π★{set Y} Q).
  Proof.
    intros HX HP. transitivity (Π★{set Y} P)%I.
    - by apply big_sep_contains, fmap_contains, elements_contains.
    - apply big_sep_mono', Forall2_fmap, Forall2_Forall.
      apply Forall_forall=> x ? /=. by apply HP, elem_of_elements.
  Qed.

  Lemma big_sepS_ne X n :
    Proper (pointwise_relation _ (dist n) ==> dist n) (uPred_big_sepS (M:=M) X).
  Proof.
    intros P1 P2 HP. apply big_sep_ne, Forall2_fmap.
    apply Forall2_Forall, Forall_true=> x; apply HP.
  Qed.
  Lemma big_sepS_proper X :
    Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
  Proof.
    intros P1 P2 HP; apply equiv_dist=> n.
    apply big_sepS_ne=> x; apply equiv_dist, HP.
  Qed.
  Lemma big_sepS_mono' X :
    Proper (pointwise_relation _ () ==> ()) (uPred_big_sepS (M:=M) X).
  Proof. intros P1 P2 HP. apply big_sepS_mono; naive_solver. Qed.

  Lemma big_sepS_empty P : (Π★{set } P)%I  True%I.
  Proof. by rewrite /uPred_big_sepS elements_empty. Qed.
  Lemma big_sepS_insert P X x :
    x  X  (Π★{set {[ x ]}  X} P)%I  (P x  Π★{set X} P)%I.
  Proof. intros. by rewrite /uPred_big_sepS elements_union_singleton. Qed.
  Lemma big_sepS_delete P X x :
    x  X  (Π★{set X} P)%I  (P x  Π★{set X  {[ x ]}} P)%I.
  Proof.
181 182
    intros. rewrite -big_sepS_insert; last set_solver.
    by rewrite -union_difference_L; last set_solver.
183 184 185 186
  Qed.
  Lemma big_sepS_singleton P x : (Π★{set {[ x ]}} P)%I  (P x)%I.
  Proof. intros. by rewrite /uPred_big_sepS elements_singleton /= right_id. Qed.
End gset.
187

188 189 190
(* Always stable *)
Local Notation AS := AlwaysStable.
Local Notation ASL := AlwaysStableL.
191
Global Instance big_and_always_stable Ps : ASL Ps  AS (Π Ps).
192
Proof. induction 1; apply _. Qed.
193
Global Instance big_sep_always_stable Ps : ASL Ps  AS (Π★ Ps).
194 195 196 197 198 199 200 201 202 203 204
Proof. induction 1; apply _. Qed.

Global Instance nil_always_stable : ASL (@nil (uPred M)).
Proof. constructor. Qed.
Global Instance cons_always_stable P Ps : AS P  ASL Ps  ASL (P :: Ps).
Proof. by constructor. Qed.
Global Instance app_always_stable Ps Ps' : ASL Ps  ASL Ps'  ASL (Ps ++ Ps').
Proof. apply Forall_app_2. Qed.
Global Instance zip_with_always_stable {A B} (f : A  B  uPred M) xs ys :
  ( x y, AS (f x y))  ASL (zip_with f xs ys).
Proof. unfold ASL=> ?; revert ys; induction xs=> -[|??]; constructor; auto. Qed.
205
End big_op.