list.v 153 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5 6
From Coq Require Export Permutation.
From prelude Require Export numbers base decidable option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Arguments length {_} _.
Arguments cons {_} _ _.
Arguments app {_} _ _.
Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.

Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.

Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y  x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x  y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x  y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
37 38 39
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

Robbert Krebbers's avatar
Robbert Krebbers committed
40
(** * Definitions *)
41 42 43 44 45 46
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : []  []
  | cons_equiv x y l k : x  y  l  k  x :: l  y :: k.
Existing Instance list_equiv.

Robbert Krebbers's avatar
Robbert Krebbers committed
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
  match l with
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
  end.

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
  match l with
  | [] => []
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
  end.

(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.

(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
  match l with
  | [] => []
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
  end.

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Definition option_list {A} : option A  list A := option_rect _ (λ x, [x]) [].
Definition list_singleton {A} (l : list A) : option A :=
  match l with [x] => Some x | _ => None end.

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l := let _ : Filter _ _ := @go in
  match l with
  | [] => []
  | x :: l => if decide (P x) then x :: filter P l else filter P l
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{ x, Decision (P x)} : list A  option (nat * A) :=
  fix go l :=
  match l with
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with 0 => [] | S n => x :: replicate n x end.

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].

(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
  end.
Arguments resize {_} !_ _ !_.

(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
  end.

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n  length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A  list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A  B  A) : A  list B  A :=
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
Definition mapM `{MBind M, MRet M} {A B} (f : A  M B) : list A  M (list B) :=
  fix go l :=
  match l with [] => mret [] | x :: l => y  f x; k  go l; mret (y :: k) end.

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat  A  B) : nat  list A  list B :=
  fix go (n : nat) (l : list A) :=
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
Definition imap {A B} (f : nat  A  B) : list A  list B := imap_go f 0.
Definition zipped_map {A B} (f : list A  list A  A  B) :
  list A  list A  list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Definition imap2_go {A B C} (f : nat  A  B  C) :
    nat  list A  list B  list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat  A  B  C) :
  list A  list B  list C := imap2_go f 0.

Inductive zipped_Forall {A} (P : list A  list A  A  Prop) :
    list A  list A  Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x  zipped_Forall P (x :: l) k  zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.

(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A  A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with [] => [[]] | x :: l => permutations l = interleave x end.

(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
Definition suffix_of {A} : relation (list A) := λ l1 l2,  k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2,  k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
223 224
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

Section prefix_suffix_ops.
  Context `{ x y : A, Decision (x = y)}.
  Definition max_prefix_of : list A  list A  list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
      if decide_rel (=) x1 x2
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
End prefix_suffix_ops.

(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_skip x l1 l2 : sublist l1 l2  sublist (x :: l1) (x :: l2)
  | sublist_cons x l1 l2 : sublist l1 l2  sublist l1 (x :: l2).
Infix "`sublist`" := sublist (at level 70) : C_scope.
252
Hint Extern 0 (_ `sublist` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
253 254 255 256 257 258 259 260 261 262

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
from [l1] while possiblity changing the order. *)
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2  contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
  | contains_cons x l1 l2 : contains l1 l2  contains l1 (x :: l2)
  | contains_trans l1 l2 l3 : contains l1 l2  contains l2 l3  contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
263
Hint Extern 0 (_ `contains` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

Section contains_dec_help.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
    | [] => Some l | x :: k => list_remove x l = list_remove_list k
    end.
End contains_dec_help.

Inductive Forall3 {A B C} (P : A  B  C  Prop) :
     list A  list B  list C  Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z  Forall3 P l k k'  Forall3 P (x :: l) (y :: k) (z :: k').

(** Set operations on lists *)
Section list_set.
  Context {A} {dec :  x y : A, Decision (x = y)}.
  Global Instance elem_of_list_dec {dec :  x y : A, Decision (x = y)}
    (x : A) :  l, Decision (x  l).
  Proof.
   refine (
    fix go l :=
    match l return Decision (x  l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
      then list_difference l k else x :: list_difference l k
    end.
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel () x k
      then x :: list_intersection l k else list_intersection l k
    end.
  Definition list_intersection_with (f : A  A  option A) :
    list A  list A  list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.

(** * Basic tactics on lists *)
(** The tactic [discriminate_list_equality] discharges a goal if it contains
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
Tactic Notation "discriminate_list_equality" hyp(H) :=
  apply (f_equal length) in H;
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
Tactic Notation "discriminate_list_equality" :=
  match goal with
  | H : @eq (list _) _ _ |- _ => discriminate_list_equality H
  end.

(** The tactic [simplify_list_equality] simplifies hypotheses involving
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
342
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
343 344
  length l1 = length k1  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
345
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
346 347
  length l2 = length k2  l1 ++ l2 = k1 ++ k2  l1 = k1  l2 = k2.
Proof.
348
  intros ? Hl. apply app_inj_1; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
349 350 351 352 353 354 355
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
Ltac simplify_list_equality :=
  repeat match goal with
  | _ => progress simplify_equality'
  | H : _ ++ _ = _ ++ _ |- _ => first
    [ apply app_inv_head in H | apply app_inv_tail in H
356 357
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
358 359 360 361 362 363 364 365 366 367
  | H : [?x] !! ?i = Some ?y |- _ =>
    destruct i; [change (Some x = Some y) in H | discriminate]
  end.

(** * General theorems *)
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
Section setoid.
  Context `{Equiv A} `{!Equivalence (() : relation A)}.
  Global Instance map_equivalence : Equivalence (() : relation (list A)).
  Proof.
    split.
    * intros l; induction l; constructor; auto.
    * induction 1; constructor; auto.
    * intros l1 l2 l3 Hl; revert l3.
      induction Hl; inversion_clear 1; constructor; try etransitivity; eauto.
  Qed.
  Global Instance cons_proper : Proper (() ==> () ==> ()) (@cons A).
  Proof. by constructor. Qed.
  Global Instance app_proper : Proper (() ==> () ==> ()) (@app A).
  Proof.
    induction 1 as [|x y l k ?? IH]; intros ?? Htl; simpl; auto.
    by apply cons_equiv, IH.
  Qed.
  Global Instance list_leibniz `{!LeibnizEquiv A} : LeibnizEquiv (list A).
386
  Proof. induction 1; f_equal; fold_leibniz; auto. Qed.
387 388
End setoid.

389
Global Instance: Inj2 (=) (=) (=) (@cons A).
Robbert Krebbers's avatar
Robbert Krebbers committed
390
Proof. by injection 1. Qed.
391
Global Instance:  k, Inj (=) (=) (k ++).
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Proof. intros ???. apply app_inv_head. Qed.
393
Global Instance:  k, Inj (=) (=) (++ k).
Robbert Krebbers's avatar
Robbert Krebbers committed
394
Proof. intros ???. apply app_inv_tail. Qed.
395
Global Instance: Assoc (=) (@app A).
Robbert Krebbers's avatar
Robbert Krebbers committed
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.

Lemma app_nil l1 l2 : l1 ++ l2 = []  l1 = []  l2 = [].
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x]  l1 = []  l2 = [x]  l1 = [x]  l2 = [].
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : ( i, l1 !! i = l2 !! i)  l1 = l2.
Proof.
  revert l2. induction l1; intros [|??] H.
  * done.
  * discriminate (H 0).
  * discriminate (H 0).
  * f_equal; [by injection (H 0)|]. apply (IHl1 _ $ λ i, H (S i)).
Qed.
Global Instance list_eq_dec {dec :  x y, Decision (x = y)} :  l k,
  Decision (l = k) := list_eq_dec dec.
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
  option_reflect (λ x, l = [x]) (length l  1) (list_singleton l).
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
Lemma nil_or_length_pos l : l = []  length l  0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0  l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x  i < length l.
Proof.
  revert i. induction l; intros [|?] ?; simplify_equality'; auto with arith.
Qed.
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i)  i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l  is_Some (l !! i).
Proof.
  revert i. induction l; intros [|?] ?; simplify_equality'; eauto with lia.
Qed.
Lemma lookup_lt_is_Some l i : is_Some (l !! i)  i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None  length l  i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None  length l  i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l  i  l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_same_length l1 l2 n :
  length l2 = n  length l1 = n 
  ( i x y, i < n  l1 !! i = Some x  l2 !! i = Some y  x = y)  l1 = l2.
Proof.
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
  * destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
  * by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Qed.
Lemma lookup_app_l l1 l2 i : i < length l1  (l1 ++ l2) !! i = l1 !! i.
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x  (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1  i  (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x 
    l1 !! i = Some x  length l1  i  l2 !! (i - length l1) = Some x.
Proof.
  split.
  * revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
      simplify_equality'; auto with lia.
    destruct (IH i) as [?|[??]]; auto with lia.
  * intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Qed.
Lemma list_lookup_middle l1 l2 x n :
  n = length l1  (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.

Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
Proof. by revert i; induction l; intros []; intros; f_equal'. Qed.
Lemma alter_length f l i : length (alter f i l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
Proof. revert i. by induction l; intros [|?]; f_equal'. Qed.
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Lemma list_lookup_alter_ne f l i j : i  j  alter f i l !! j = l !! j.
Proof.
  revert i j. induction l; [done|]. intros [][] ?; csimpl; auto with congruence.
Qed.
Lemma list_lookup_insert l i x : i < length l  <[i:=x]>l !! i = Some x.
Proof. revert i. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma list_lookup_insert_ne l i j x : i  j  <[i:=x]>l !! j = l !! j.
Proof.
  revert i j. induction l; [done|]. intros [] [] ?; simpl; auto with congruence.
Qed.
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y 
    i = j  x = y  j < length l  i  j  l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
  * intros Hy. assert (j < length l).
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
  * intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Qed.
Lemma list_insert_commute l i j x y :
  i  j  <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal'; auto. Qed.
Lemma list_lookup_other l i x :
  length l  1  l !! i = Some x   j y, j  i  l !! j = Some y.
Proof.
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_equality'.
520 521
  * by exists 1, x1.
  * by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
Qed.
Lemma alter_app_l f l1 l2 i :
  i < length l1  alter f i (l1 ++ l2) = alter f i l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma alter_app_r f l1 l2 i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
Lemma alter_app_r_alt f l1 l2 i :
  length l1  i  alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : ( x, f x = x)  alter f i l = l.
Proof. intros ?. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
Lemma list_alter_ext f g l k i :
  ( x, l !! i = Some x  f x = g x)  l = k  alter f i l = alter g i k.
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal'; auto. Qed.
Lemma list_alter_compose f g l i :
  alter (f  g) i l = alter f i (alter g i l).
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
Lemma list_alter_commute f g l i j :
  i  j  alter f i (alter g j l) = alter g j (alter f i l).
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
Lemma insert_app_l l1 l2 i x :
  i < length l1  <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
Proof. revert i. induction l1; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
Proof. revert i. induction l1; intros [|?]; f_equal'; auto. Qed.
Lemma insert_app_r_alt l1 l2 i x :
  length l1  i  <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
Proof. induction l1; f_equal'; auto. Qed.

Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i  j < i + length k  j < length l 
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k  j  list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y 
    (j < i  i + length k  j)  l !! j = Some y 
    i  j < i + length k  j < length l  k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k  j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
  * intros Hy. assert (j < length l).
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
  * intuition. by rewrite list_lookup_inserts by lia.
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j  <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

(** ** Properties of the [elem_of] predicate *)
Lemma not_elem_of_nil x : x  [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil x : x  []  False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : ( x, x  l)  l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x  l  l  [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x  y :: l  x = y  x  l.
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x  y :: l  x  y  x  l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Proof.
  induction l1.
  * split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  * simpl. rewrite !elem_of_cons, IHl1. tauto.
Qed.
Lemma not_elem_of_app l1 l2 x : x  l1 ++ l2  x  l1  x  l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x  [y]  x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Global Instance elem_of_list_permutation_proper x : Proper (() ==> iff) (x ).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma elem_of_list_split l x : x  l   l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
637
  by exists (y :: l1), l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
Qed.
Lemma elem_of_list_lookup_1 l x : x  l   i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x  x  l.
Proof.
  revert i. induction l; intros [|i] ?; simplify_equality'; constructor; eauto.
Qed.
Lemma elem_of_list_lookup l x : x  l   i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_omap {B} (f : A  option B) l (y : B) :
  y  omap f l   x, x  l  f x = Some y.
Proof.
  split.
  * induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
      setoid_rewrite elem_of_cons; naive_solver.
  * intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
      simplify_equality; try constructor; auto.
Qed.

(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A)  True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l)  x  l  NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 x l : NoDup (x :: l)  x  l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 x l : NoDup (x :: l)  NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
Lemma NoDup_app l k : NoDup (l ++ k)  NoDup l  ( x, x  l  x  k)  NoDup k.
Proof.
  induction l; simpl.
  * rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  * rewrite !NoDup_cons.
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Global Instance NoDup_proper: Proper (() ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
  * by rewrite !NoDup_nil.
  * by rewrite !NoDup_cons, IH, Hlk.
  * rewrite !NoDup_cons, !elem_of_cons. intuition.
  * intuition.
Qed.
Lemma NoDup_lookup l i j x :
  NoDup l  l !! i = Some x  l !! j = Some x  i = j.
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
  { intros; simplify_equality. }
  intros [|i] [|j] ??; simplify_equality'; eauto with f_equal;
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
  NoDup l   i j x, l !! i = Some x  l !! j = Some x  i = j.
Proof.
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
  * rewrite elem_of_list_lookup. intros [i ?].
    by feed pose proof (Hl (S i) 0 x); auto.
701
  * apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Robbert Krebbers's avatar
Robbert Krebbers committed
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
Qed.

Section no_dup_dec.
  Context `{! x y, Decision (x = y)}.
  Global Instance NoDup_dec:  l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
    | x :: l =>
      match decide_rel () x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H  NoDup_cons_12 _ _)
        end
      end
    end.
  Lemma elem_of_remove_dups l x : x  remove_dups l  x  l.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_cons; intuition (simplify_equality; auto).
  Qed.
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End no_dup_dec.

(** ** Set operations on lists *)
Section list_set.
  Context {dec :  x y, Decision (x = y)}.
  Lemma elem_of_list_difference l k x : x  list_difference l k  x  l  x  k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l  NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * done.
    * constructor. rewrite elem_of_list_difference; intuition. done.
  Qed.
  Lemma elem_of_list_union l k x : x  list_union l k  x  l  x  k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x  k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l  NoDup k  NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
    * by apply NoDup_list_difference.
    * intro. rewrite elem_of_list_difference. intuition.
    * done.
  Qed.
  Lemma elem_of_list_intersection l k x :
    x  list_intersection l k  x  l  x  k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l  NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
    * constructor.
    * constructor. rewrite elem_of_list_intersection; intuition. done.
    * done.
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x  list_intersection_with f l k   x1 x2,
      x1  l  x2  k  f x1 x2 = Some x.
  Proof.
    split.
    * induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
      intros Hx. setoid_rewrite elem_of_cons.
      cut (( x2, x2  k  f x1 x2 = Some x)
         x  list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
    * intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

(** ** Properties of the [filter] function *)
Section filter.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x  filter P l  P x  x  l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma NoDup_filter l : NoDup l  NoDup (filter P l).
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.

(** ** Properties of the [find] function *)
Section find.
  Context (P : A  Prop) `{ x, Decision (P x)}.
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x)  l !! i = Some x  P x.
  Proof.
    revert i; induction l; intros [] ?;
      repeat (match goal with x : prod _ _ |- _ => destruct x end
              || simplify_option_equality); eauto.
  Qed.
  Lemma list_find_elem_of l x : x  l  P x  is_Some (list_find P l).
  Proof.
    induction 1 as [|x y l ? IH]; intros; simplify_option_equality; eauto.
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
  Qed.
End find.

(** ** Properties of the [reverse] function *)
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length l : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma elem_of_reverse_2 x l : x  l  x  reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x  reverse l  x  l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
852
Global Instance: Inj (=) (=) (@reverse A).
Robbert Krebbers's avatar
Robbert Krebbers committed
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
Lemma sum_list_with_app (f : A  nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A  nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.

(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.

(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x  take i l ++ x :: drop (S i) l = l.
Proof.
  revert i x. induction l; intros [|?] ??; simplify_equality'; f_equal; auto.
Qed.
Lemma take_nil n : take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app l k : take (length l) (l ++ k) = l.
Proof. induction l; f_equal'; auto. Qed.
Lemma take_app_alt l k n : n = length l  take n (l ++ k) = l.
Proof. intros ->. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1  take n ((l1 ++ l2) ++ l3) = l1.
888
Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
889 890 891 892 893 894 895 896 897 898 899 900
Lemma take_app_le l k n : n  length l  take n (l ++ k) = take n l.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma take_plus_app l k n m :
  length l = n  take (n + m) (l ++ k) = l ++ take m k.
Proof. intros <-. induction l; f_equal'; auto. Qed.
Lemma take_app_ge l k n :
  length l  n  take n (l ++ k) = l ++ take (n - length l) k.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma take_ge l n : length l  n  take n l = l.
Proof. revert n. induction l; intros [|?] ?; f_equal'; auto with lia. Qed.
Lemma take_take l n m : take n (take m l) = take (min n m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal'; auto. Qed.
901
Lemma take_idemp l n : take n (take n l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
Proof. by rewrite take_take, Min.min_idempotent. Qed.
Lemma take_length l n : length (take n l) = min n (length l).
Proof. revert n. induction l; intros [|?]; f_equal'; done. Qed.
Lemma take_length_le l n : n  length l  length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.
Lemma take_length_ge l n : length l  n  length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.
Lemma lookup_take l n i : i < n  take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_take_ge l n i : n  i  take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma take_alter f l n i : n  i  take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  * by rewrite !lookup_take_ge.
  * by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Qed.
Lemma take_insert l n i x : n  i  take n (<[i:=x]>l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
  * by rewrite !lookup_take_ge.
  * by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Qed.

(** ** Properties of the [drop] function *)
Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_length l n : length (drop n l) = length l - n.
Proof. revert n. by induction l; intros [|i]; f_equal'. Qed.
Lemma drop_ge l n : length l  n  drop n l = [].
Proof. revert n. induction l; intros [|??]; simpl in *; auto with lia. Qed.
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.
Lemma drop_app_le l k n :
  n  length l  drop n (l ++ k) = drop n l ++ k.
Proof. revert n. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma drop_app l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_alt l k n : n = length l  drop n (l ++ k) = k.
Proof. intros ->. by apply drop_app. Qed.
Lemma drop_app3_alt l1 l2 l3 n :
  n = length l1  drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
952
Proof. intros ->. by rewrite <-(assoc_L (++)), drop_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
Lemma drop_app_ge l k n :
  length l  n  drop n (l ++ k) = drop (n - length l) k.
Proof.
  intros. rewrite <-(Nat.sub_add (length l) n) at 1 by done.
  by rewrite Nat.add_comm, <-drop_drop, drop_app.
Qed.
Lemma drop_plus_app l k n m :
  length l = n  drop (n + m) (l ++ k) = drop m k.
Proof. intros <-. by rewrite <-drop_drop, drop_app. Qed.
Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter f l n i : i < n  drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert l n i x : i < n  drop n (<[i:=x]>l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
Proof. revert i. induction l; intros [|?]; f_equal'; auto. Qed.
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
Proof. revert n m. induction l; intros [|?] [|?]; f_equal'; auto. Qed.
Lemma drop_take_drop l n m : n  m  drop n (take m l) ++ drop m l = drop n l.
Proof.
  revert n m. induction l; intros [|?] [|?] ?;
    f_equal'; auto using take_drop with lia.
Qed.

(** ** Properties of the [replicate] function *)
Lemma replicate_length n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
  replicate n x !! i = Some y  y = x  i < n.
Proof.
  split.
  * revert i. induction n; intros [|?]; naive_solver auto with lia.
  * intros [-> Hi]. revert i Hi.
    induction n; intros [|?]; naive_solver auto with lia.
Qed.
Lemma lookup_replicate_1 n x y i :
  replicate n x !! i = Some y  y = x  i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n  replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_None n x i : n  i  replicate n x !! i = None.
Proof.
  rewrite eq_None_not_Some, Nat.le_ngt. split.
  * intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
  * intros Hx ?. destruct Hx. exists x; auto using lookup_replicate_2.
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
Proof. revert i. induction n; intros [|?]; f_equal'; auto. Qed.
Lemma elem_of_replicate_inv x n y : x  replicate n y  x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate  n x.
Proof. done. Qed.
Lemma replicate_plus n m x :
  replicate (n + m) x = replicate n x ++ replicate m x.
Proof. induction n; f_equal'; auto. Qed.
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
Proof. revert m. by induction n; intros [|?]; f_equal'. Qed.
Lemma take_replicate_plus n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
Proof. revert m. by induction n; intros [|?]; f_equal'. Qed.
Lemma drop_replicate_plus n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma replicate_as_elem_of x n l :
  replicate n x = l  length l = n   y, y  l  y = x.
Proof.
  split; [intros <-; eauto using elem_of_replicate_inv, replicate_length|].
  intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal'.
  * apply Hl. by left.
  * apply IH. intros ??. apply Hl. by right.
Qed.
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
Proof.
  symmetry. apply replicate_as_elem_of.
  rewrite reverse_length, replicate_length. split; auto.
  intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Qed.
Lemma replicate_false βs n : length βs = n  replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.

(** ** Properties of the [resize] function *)
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
Proof. revert n. induction l; intros [|?]; f_equal'; auto. Qed.
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
Proof. rewrite resize_spec. rewrite take_nil. f_equal'. lia. Qed.
Lemma resize_ge l n x :
  length l  n  resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n  length l  resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
  simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l  resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Lemma resize_plus l n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
  revert n m. induction l; intros [|?] [|?]; f_equal'; auto.
  * by rewrite Nat.add_0_r, (right_id_L [] (++)).
  * by rewrite replicate_plus.
Qed.
Lemma resize_plus_eq l n m x :
  length l = n  resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_plus, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
  n  length l1  resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros. by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1  resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
  length l1  n  resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
1079
  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
  do 2 f_equal. rewrite app_length. lia.
Qed.
Lemma resize_length l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, app_length, replicate_length, take_length. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
Proof. revert m. induction n; intros [|?]; f_equal'; auto. Qed.
Lemma resize_resize l n m x : n  m  resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite !resize_nil, resize_replicate.
  * intros [|?] [|?] ?; f_equal'; auto with lia.
Qed.
1092
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Robbert Krebbers's avatar
Robbert Krebbers committed
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n  m  resize n x (take m l) = resize n x l.
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal'; auto with lia. Qed.
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
  revert n m. induction l; intros [|?][|?]; f_equal'; auto using take_replicate.
Qed.
Lemma take_resize_le l n m x : n  m  take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_plus l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
  n  m  drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
  * intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  * intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Qed.
Lemma drop_resize_plus l n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n  i < length l  resize n x l !! i = l !! i.
Proof.
  intros ??. destruct (decide (n < length l)).
  * by rewrite resize_le, lookup_take by lia.
  * by rewrite resize_ge, lookup_app_l by lia.
Qed.
Lemma lookup_resize_new l n x i :
  length l  i  i < n  resize n x l !! i = Some x.
Proof.
  intros ??. rewrite resize_ge by lia.
  replace i with (length l + (i - length l)) by lia.
  by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_resize_old l n x i : n  i  resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite resize_length. Qed.
End general_properties.

Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

(** ** Properties of the [reshape] function *)
Lemma reshape_length szs l : length (reshape szs l) = length szs.
Proof. revert l. by induction szs; intros; f_equal'. Qed.
Lemma join_reshape szs l :
  sum_list szs = length l  mjoin (reshape szs l) = l.
Proof.
  revert l. induction szs as [|sz szs IH]; simpl; intros l Hl; [by destruct l|].
  by rewrite IH, take_drop by (rewrite drop_length; lia).
Qed.
Lemma sum_list_replicate n m : sum_list (replicate m n) = m * n.
Proof. induction m; simpl; auto. Qed.

(** ** Properties of [sublist_lookup] and [sublist_alter] *)
Lemma sublist_lookup_length l i n k :
  sublist_lookup i n l = Some k  length k = n.
Proof.
  unfold sublist_lookup; intros; simplify_option_equality.
  rewrite take_length, drop_length; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n  sublist_lookup 0 n l = Some l.
Proof.
  intros. unfold sublist_lookup; case_option_guard; [|lia].
  by rewrite take_ge by (rewrite drop_length; lia).
Qed.
Lemma sublist_lookup_Some l i n :
  i + n  length l  sublist_lookup i n l = Some (take n (drop i l)).
Proof. by unfold sublist_lookup; intros; simplify_option_equality. Qed.
Lemma sublist_lookup_None l i n :
  length l < i + n  sublist_lookup i n l = None.
Proof. by unfold sublist_lookup; intros; simplify_option_equality by lia. Qed.
Lemma sublist_eq l k n :
  (n | length l)  (n | length k) 
  ( i, sublist_lookup (i * n) n l = sublist_lookup (i * n) n k)  l = k.
Proof.
  revert l k. assert ( l i,
    n  0  (n | length l)  ¬n * i `div` n + n  length l  length l  i).
  { intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
    rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
    apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
  intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l),
      (nil_length_inv k) by eauto using Nat.divide_0_l. }
  apply list_eq; intros i. specialize (Hlookup (i `div` n)).
  rewrite (Nat.mul_comm _ n) in Hlookup.
  unfold sublist_lookup in *; simplify_option_equality;
    [|by rewrite !lookup_ge_None_2 by auto].
  apply (f_equal (!! i `mod` n)) in Hlookup.
  by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
    by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
  length l = j * n  length k = j * n 
  ( i,i < j  sublist_lookup (i * n) n l = sublist_lookup (i * n) n k)  l = k.
Proof.
  intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
  apply sublist_eq with n; [by exists j|by exists j|].
  intros i. destruct (decide (i < j)); [by auto|].
  assert ( m, m = j * n  m < i * n + n).
  { intros ? ->. replace (i * n + n) with (S i * n) by lia.
    apply Nat.mul_lt_mono_pos_r; lia. }
  by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
  0 < n  length l = m * n 
  reshape (replicate m n) l !! i = sublist_lookup (i * n) n l.
Proof.
  intros Hn Hl. unfold sublist_lookup.  apply option_eq; intros x; split.
  * intros Hx. case_option_guard as Hi.
    { f_equal. clear Hi. revert i l Hl Hx.
      induction m as [|m IH]; intros [|i] l ??; simplify_equality'; auto.
      rewrite <-drop_drop. apply IH; rewrite ?drop_length; auto with lia. }
    destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
    apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
    by rewrite reshape_length, replicate_length in Hx.
  * intros Hx. case_option_guard as Hi; simplify_equality'.
    revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
    intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
    rewrite IH; rewrite ?drop_length; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
  sublist_lookup i n l1 = Some l2  sublist_lookup j m l2 = Some l3 
  sublist_lookup (i + j) m l1 = Some l3.
Proof.
  unfold sublist_lookup; intros; simplify_option_equality;
    repeat match goal with
    | H : _  length _ |- _ => rewrite take_length, drop_length in H
    end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
      ?Min.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma sublist_alter_length f l i n k :
  sublist_lookup i n l = Some k  length (f k) = n 
  length (sublist_alter f i n l) = length l.
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_equality.
  rewrite !app_length, Hk, !take_length, !drop_length; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
  sublist_lookup i n l = Some k  length (f k) = n 
  sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk ?. erewrite sublist_alter_length by eauto.
  unfold sublist_alter; simplify_option_equality.
  by rewrite Hk, drop_app_alt, take_app_alt by (rewrite ?take_length; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
  sublist_lookup j n l = Some k  length (f k) = n  i + n  j  j + n  i 
  sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk Hi ?. erewrite sublist_alter_length by eauto.
  unfold sublist_alter; simplify_option_equality; f_equal; rewrite Hk.
  apply list_eq; intros ii.
  destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
  rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
  { by rewrite lookup_app_l, lookup_take by (rewrite ?take_length; lia). }
  rewrite lookup_app_r by (rewrite take_length; lia).
  rewrite take_length_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n  sublist_alter f 0 n l = f l.
Proof.
  intros <-. unfold sublist_alter; simpl.
  by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
  sublist_lookup i n l = Some k  length (f k) = n  length (g k) = n 
  sublist_alter (f  g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
  unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_equality.
1268