sts.v 16.1 KB
Newer Older
1
From prelude Require Export sets.
2 3
From algebra Require Export cmra.
From algebra Require Import dra.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7
Local Arguments valid _ _ !_ /.
Local Arguments op _ _ !_ !_ /.
Local Arguments unit _ _ !_ /.

Robbert Krebbers's avatar
Robbert Krebbers committed
8
(** * Definition of STSs *)
9
Module sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
10
Structure stsT := STS {
Ralf Jung's avatar
Ralf Jung committed
11 12
  state : Type;
  token : Type;
Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
  prim_step : relation state;
  tok : state  set token;
Ralf Jung's avatar
Ralf Jung committed
15
}.
16
Arguments STS {_ _} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
17 18 19 20
Arguments prim_step {_} _ _.
Arguments tok {_} _.
Notation states sts := (set (state sts)).
Notation tokens sts := (set (token sts)).
Ralf Jung's avatar
Ralf Jung committed
21

Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24
(** * Theory and definitions *)
Section sts.
Context {sts : stsT}.
Ralf Jung's avatar
Ralf Jung committed
25

Robbert Krebbers's avatar
Robbert Krebbers committed
26 27
(** ** Step relations *)
Inductive step : relation (state sts * tokens sts) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
28
  | Step s1 s2 T1 T2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
29
     prim_step s1 s2  tok s1  T1    tok s2  T2   
Ralf Jung's avatar
Ralf Jung committed
30
     tok s1  T1  tok s2  T2  step (s1,T1) (s2,T2).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop :=
Robbert Krebbers's avatar
Robbert Krebbers committed
32
  | Frame_step T1 T2 :
33
     T1  (tok s1  T)    step (s1,T1) (s2,T2)  frame_step T s1 s2.
Robbert Krebbers's avatar
Robbert Krebbers committed
34 35 36

(** ** Closure under frame steps *)
Record closed (S : states sts) (T : tokens sts) : Prop := Closed {
37
  closed_ne : S  ;
38
  closed_disjoint s : s  S  tok s  T  ;
Robbert Krebbers's avatar
Robbert Krebbers committed
39 40
  closed_step s1 s2 : s1  S  frame_step T s1 s2  s2  S
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
Definition up (s : state sts) (T : tokens sts) : states sts :=
Ralf Jung's avatar
Ralf Jung committed
42
  mkSet (rtc (frame_step T) s).
Robbert Krebbers's avatar
Robbert Krebbers committed
43
Definition up_set (S : states sts) (T : tokens sts) : states sts :=
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  S = λ s, up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
45

Robbert Krebbers's avatar
Robbert Krebbers committed
46 47 48 49
(** Tactic setup *)
Hint Resolve Step.
Hint Extern 10 (equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (¬equiv (A:=set _) _ _) => solve_elem_of : sts.
50 51
Hint Extern 10 (_  _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
52 53 54

(** ** Setoids *)
Instance framestep_proper' : Proper (() ==> (=) ==> (=) ==> impl) frame_step.
55
Proof. intros ?? HT ?? <- ?? <-; destruct 1; econstructor; eauto with sts. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57
Global Instance framestep_proper : Proper (() ==> (=) ==> (=) ==> iff) frame_step.
Proof. by intros ?? [??] ??????; split; apply framestep_proper'. Qed.
58
Instance closed_proper' : Proper (() ==> () ==> impl) closed.
Robbert Krebbers's avatar
Robbert Krebbers committed
59
Proof.
60
  intros ?? HT ?? HS; destruct 1;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
    constructor; intros until 0; rewrite -?HS -?HT; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
62
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
63
Global Instance closed_proper : Proper (() ==> () ==> iff) closed.
64
Proof. by split; apply closed_proper'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
Global Instance up_preserving : Proper ((=) ==> flip () ==> ()) up.
Robbert Krebbers's avatar
Robbert Krebbers committed
66
Proof.
67
  intros s ? <- T T' HT ; apply elem_of_subseteq.
Robbert Krebbers's avatar
Robbert Krebbers committed
68 69 70
  induction 1 as [|s1 s2 s3 [T1 T2]]; [constructor|].
  eapply rtc_l; [eapply Frame_step with T1 T2|]; eauto with sts.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
Global Instance up_proper : Proper ((=) ==> () ==> ()) up.
72
Proof. by intros ??? ?? [??]; split; apply up_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Global Instance up_set_preserving : Proper (() ==> flip () ==> ()) up_set.
Ralf Jung's avatar
Ralf Jung committed
74 75 76 77
Proof.
  intros S1 S2 HS T1 T2 HT. rewrite /up_set.
  f_equiv; last done. move =>s1 s2 Hs. simpl in HT. by apply up_preserving.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Global Instance up_set_proper : Proper (() ==> () ==> ()) up_set.
Robbert Krebbers's avatar
Robbert Krebbers committed
79
Proof. by intros S1 S2 [??] T1 T2 [??]; split; apply up_set_preserving. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

(** ** Properties of closure under frame steps *)
Lemma closed_disjoint' S T s : closed S T  s  S  tok s  T  .
Proof. intros [_ ? _]; solve_elem_of. Qed.
Lemma closed_steps S T s1 s2 :
  closed S T  s1  S  rtc (frame_step T) s1 s2  s2  S.
Proof. induction 3; eauto using closed_step. Qed.
Lemma closed_op T1 T2 S1 S2 :
  closed S1 T1  closed S2 T2 
  T1  T2    S1  S2    closed (S1  S2) (T1  T2).
Proof.
  intros [_ ? Hstep1] [_ ? Hstep2] ?; split; [done|solve_elem_of|].
  intros s3 s4; rewrite !elem_of_intersection; intros [??] [T3 T4 ?]; split.
  * apply Hstep1 with s3, Frame_step with T3 T4; auto with sts.
  * apply Hstep2 with s3, Frame_step with T3 T4; auto with sts.
Qed.
Lemma step_closed s1 s2 T1 T2 S Tf :
  step (s1,T1) (s2,T2)  closed S Tf  s1  S  T1  Tf   
  s2  S  T2  Tf    tok s2  T2  .
Proof.
  inversion_clear 1 as [???? HR Hs1 Hs2]; intros [?? Hstep]??; split_ands; auto.
  * eapply Hstep with s1, Frame_step with T1 T2; auto with sts.
  * solve_elem_of -Hstep Hs1 Hs2.
Qed.

(** ** Properties of the closure operators *)
106
Lemma elem_of_up s T : s  up s T.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
Proof. constructor. Qed.
108
Lemma subseteq_up_set S T : S  up_set S T.
Robbert Krebbers's avatar
Robbert Krebbers committed
109
Proof. intros s ?; apply elem_of_bind; eauto using elem_of_up. Qed.
Ralf Jung's avatar
Ralf Jung committed
110 111
Lemma up_up_set s T : up s T  up_set {[ s ]} T.
Proof. by rewrite /up_set collection_bind_singleton. Qed.
112
Lemma closed_up_set S T :
113
  ( s, s  S  tok s  T  )  S    closed (up_set S T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
114
Proof.
115
  intros HS Hne; unfold up_set; split.
116
  * assert ( s, s  up s T) by eauto using elem_of_up. solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
117
  * intros s; rewrite !elem_of_bind; intros (s'&Hstep&Hs').
118
    specialize (HS s' Hs'); clear Hs' Hne S.
119
    induction Hstep as [s|s1 s2 s3 [T1 T2 ? Hstep] ? IH]; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121 122 123
    inversion_clear Hstep; apply IH; clear IH; auto with sts.
  * intros s1 s2; rewrite !elem_of_bind; intros (s&?&?) ?; exists s.
    split; [eapply rtc_r|]; eauto.
Qed.
124
Lemma closed_up_set_empty S : S    closed (up_set S ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
125
Proof. eauto using closed_up_set with sts. Qed.
126
Lemma closed_up s T : tok s  T    closed (up s T) T.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
Proof.
128
  intros; rewrite -(collection_bind_singleton (λ s, up s T) s).
129
  apply closed_up_set; solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
Qed.
131
Lemma closed_up_empty s : closed (up s ) .
Robbert Krebbers's avatar
Robbert Krebbers committed
132
Proof. eauto using closed_up with sts. Qed.
133
Lemma up_closed S T : closed S T  up_set S T  S.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
Proof.
135
  intros; split; auto using subseteq_up_set; intros s.
Robbert Krebbers's avatar
Robbert Krebbers committed
136 137 138
  unfold up_set; rewrite elem_of_bind; intros (s'&Hstep&?).
  induction Hstep; eauto using closed_step.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
End sts. End sts.

Notation stsT := sts.stsT.
Notation STS := sts.STS.

(** * STSs form a disjoint RA *)
(* This module should never be imported, uses the module [sts] below. *)
Module sts_dra.
Import sts.

(* The type of bounds we can give to the state of an STS. This is the type
   that we equip with an RA structure. *)
Inductive car (sts : stsT) :=
  | auth : state sts  set (token sts)  car sts
  | frag : set (state sts)  set (token sts )  car sts.
Arguments auth {_} _ _.
Arguments frag {_} _ _.

Section sts_dra.
Context {sts : stsT}.
Infix "≼" := dra_included.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

Inductive sts_equiv : Equiv (car sts) :=
  | auth_equiv s T1 T2 : T1  T2  auth s T1  auth s T2
  | frag_equiv S1 S2 T1 T2 : T1  T2  S1  S2  frag S1 T1  frag S2 T2.
Existing Instance sts_equiv.
Instance sts_valid : Valid (car sts) := λ x,
  match x with auth s T => tok s  T   | frag S' T => closed S' T end.
Instance sts_unit : Unit (car sts) := λ x,
  match x with
  | frag S' _ => frag (up_set S'  ) 
  | auth s _  => frag (up s ) 
  end.
Inductive sts_disjoint : Disjoint (car sts) :=
  | frag_frag_disjoint S1 S2 T1 T2 :
     S1  S2    T1  T2    frag S1 T1  frag S2 T2
  | auth_frag_disjoint s S T1 T2 :
     s  S  T1  T2    auth s T1  frag S T2
  | frag_auth_disjoint s S T1 T2 :
     s  S  T1  T2    frag S T1  auth s T2.
Existing Instance sts_disjoint.
Instance sts_op : Op (car sts) := λ x1 x2,
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (S1  S2) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T1, auth s T2 => auth s (T1  T2)
  | auth s T1, auth _ T2 => auth s (T1  T2)(* never happens *)
  end.
Instance sts_minus : Minus (car sts) := λ x1 x2,
  match x1, x2 with
  | frag S1 T1, frag S2 T2 => frag (up_set S1 (T1  T2)) (T1  T2)
  | auth s T1, frag _ T2 => auth s (T1  T2)
  | frag _ T2, auth s T1 => auth s (T1  T2) (* never happens *)
  | auth s T1, auth _ T2 => frag (up s (T1  T2)) (T1  T2)
  end.

Hint Extern 10 (equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (¬equiv (A:=set _) _ _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Hint Extern 10 (_  _) => solve_elem_of : sts.
Instance sts_equivalence: Equivalence (() : relation (car sts)).
Proof.
  split.
  * by intros []; constructor.
  * by destruct 1; constructor.
  * destruct 1; inversion_clear 1; constructor; etransitivity; eauto.
Qed.
Global Instance sts_dra : DRA (car sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
209 210 211 212 213
Proof.
  split.
  * apply _.
  * by do 2 destruct 1; constructor; setoid_subst.
  * by destruct 1; constructor; setoid_subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
  * by destruct 1; simpl; intros ?; setoid_subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216 217
  * by intros ? [|]; destruct 1; inversion_clear 1; constructor; setoid_subst.
  * by do 2 destruct 1; constructor; setoid_subst.
  * assert ( T T' S s,
218
      closed S T  s  S  tok s  T'    tok s  (T  T')  ).
219
    { intros S T T' s [??]; solve_elem_of. }
Robbert Krebbers's avatar
Robbert Krebbers committed
220
    destruct 3; simpl in *; auto using closed_op with sts.
221
  * intros []; simpl; eauto using closed_up, closed_up_set, closed_ne with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
222 223
  * intros ???? (z&Hy&?&Hxz); destruct Hxz; inversion Hy;clear Hy; setoid_subst;
      rewrite ?disjoint_union_difference; auto using closed_up with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
    eapply closed_up_set; eauto 2 using closed_disjoint with sts.
225
  * intros [] [] []; constructor; rewrite ?assoc; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
226 227 228 229
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 4; inversion_clear 1; constructor; auto with sts.
  * destruct 1; constructor; auto with sts.
  * destruct 3; constructor; auto with sts.
230
  * intros [|S T]; constructor; auto using elem_of_up with sts.
231
    assert (S  up_set S   S  ) by eauto using subseteq_up_set, closed_ne.
232
    solve_elem_of.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
  * intros [|S T]; constructor; auto with sts.
234
    assert (S  up_set S ); auto using subseteq_up_set with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  * intros [s T|S T]; constructor; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
236 237 238
    + rewrite (up_closed (up _ _)); auto using closed_up with sts.
    + rewrite (up_closed (up_set _ _));
        eauto using closed_up_set, closed_ne with sts.
239
  * intros x y ?? (z&Hy&?&Hxz); exists (unit (x  y)); split_ands.
240
    + destruct Hxz;inversion_clear Hy;constructor;unfold up_set; solve_elem_of.
241 242 243 244
    + destruct Hxz; inversion_clear Hy; simpl;
        auto using closed_up_set_empty, closed_up_empty with sts.
    + destruct Hxz; inversion_clear Hy; constructor;
        repeat match goal with
245 246 247 248
        | |- context [ up_set ?S ?T ] =>
           unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
        | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
249 250 251
        end; auto with sts.
  * intros x y ?? (z&Hy&_&Hxz); destruct Hxz; inversion_clear Hy; constructor;
      repeat match goal with
252 253 254 255
      | |- context [ up_set ?S ?T ] =>
         unless (S  up_set S T) by done; pose proof (subseteq_up_set S T)
      | |- context [ up ?s ?T ] =>
           unless (s  up s T) by done; pose proof (elem_of_up s T)
256
      end; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
257 258
  * intros x y ?? (z&Hy&?&Hxz); destruct Hxz as [S1 S2 T1 T2| |];
      inversion Hy; clear Hy; constructor; setoid_subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
259
      rewrite ?disjoint_union_difference; auto.
260
    split; [|apply intersection_greatest; auto using subseteq_up_set with sts].
Robbert Krebbers's avatar
Robbert Krebbers committed
261 262 263 264
    apply intersection_greatest; [auto with sts|].
    intros s2; rewrite elem_of_intersection.
    unfold up_set; rewrite elem_of_bind; intros (?&s1&?&?&?).
    apply closed_steps with T2 s1; auto with sts.
Robbert Krebbers's avatar
Robbert Krebbers committed
265
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
Canonical Structure RA : cmraT := validityRA (car sts).
End sts_dra. End sts_dra.

(** * The STS Resource Algebra *)
(** Finally, the general theory of STS that should be used by users *)
Notation stsRA := (@sts_dra.RA).

Section sts_definitions.
  Context {sts : stsT}.
  Definition sts_auth (s : sts.state sts) (T : sts.tokens sts) : stsRA sts :=
    to_validity (sts_dra.auth s T).
  Definition sts_frag (S : sts.states sts) (T : sts.tokens sts) : stsRA sts :=
    to_validity (sts_dra.frag S T).
  Definition sts_frag_up (s : sts.state sts) (T : sts.tokens sts) : stsRA sts :=
    sts_frag (sts.up s T) T.
End sts_definitions.
Instance: Params (@sts_auth) 2.
Instance: Params (@sts_frag) 1.
Instance: Params (@sts_frag_up) 2.

Section stsRA.
Import sts.
Context {sts : stsT}.
Implicit Types s : state sts.
Implicit Types S : states sts.
Implicit Types T : tokens sts.

(** Setoids *)
Global Instance sts_auth_proper s : Proper (() ==> ()) (sts_auth s).
Proof. (* this proof is horrible *)
  intros T1 T2 HT. rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Qed.
Global Instance sts_frag_proper : Proper (() ==> () ==> ()) (@sts_frag sts).
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
301 302
  intros S1 S2 ? T1 T2 HT; rewrite /sts_auth.
  by eapply to_validity_proper; try apply _; constructor.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
304 305
Global Instance sts_frag_up_proper s : Proper (() ==> ()) (sts_frag_up s).
Proof. intros T1 T2 HT. by rewrite /sts_frag_up HT. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
306

Robbert Krebbers's avatar
Robbert Krebbers committed
307 308 309 310 311 312 313
(** Validity *)
Lemma sts_auth_valid s T :  sts_auth s T  tok s  T  .
Proof. split. by move=> /(_ 0). by intros ??. Qed.
Lemma sts_frag_valid S T :  sts_frag S T  closed S T.
Proof. split. by move=> /(_ 0). by intros ??. Qed.
Lemma sts_frag_up_valid s T : tok s  T     sts_frag_up s T.
Proof. intros; by apply sts_frag_valid, closed_up. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
314

Robbert Krebbers's avatar
Robbert Krebbers committed
315 316 317
Lemma sts_auth_frag_valid_inv s S T1 T2 :
   (sts_auth s T1  sts_frag S T2)  s  S.
Proof. by move=> /(_ 0) [? [? Hdisj]]; inversion Hdisj. Qed.
Ralf Jung's avatar
Ralf Jung committed
318

Robbert Krebbers's avatar
Robbert Krebbers committed
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
(** Op *)
Lemma sts_op_auth_frag s S T :
  s  S  closed S T  sts_auth s   sts_frag S T  sts_auth s T.
Proof.
  intros; split; [split|constructor; solve_elem_of]; simpl.
  - intros (?&?&?); by apply closed_disjoint' with S.
  - intros; split_ands. solve_elem_of+. done. constructor; solve_elem_of.
Qed.
Lemma sts_op_auth_frag_up s T :
  tok s  T    sts_auth s   sts_frag_up s T  sts_auth s T.
Proof. intros; apply sts_op_auth_frag; auto using elem_of_up, closed_up. Qed.

(** Frame preserving updates *)
Lemma sts_update_auth s1 s2 T1 T2 :
  step (s1,T1) (s2,T2)  sts_auth s1 T1 ~~> sts_auth s2 T2.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  intros ?; apply validity_update; inversion 3 as [|? S ? Tf|]; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
  destruct (step_closed s1 s2 T1 T2 S Tf) as (?&?&?); auto.
337
  repeat (done || constructor).
Robbert Krebbers's avatar
Robbert Krebbers committed
338
Qed.
Ralf Jung's avatar
Ralf Jung committed
339

Robbert Krebbers's avatar
Robbert Krebbers committed
340 341
Lemma sts_update_frag S1 S2 T :
  closed S2 T  S1  S2  sts_frag S1 T ~~> sts_frag S2 T.
342
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
343 344 345
  rewrite /sts_frag=> HS Hcl. apply validity_update.
  inversion 3 as [|? S ? Tf|]; simplify_equality'.
  - split; first done. constructor; [solve_elem_of|done].
346 347 348
  - split; first done. constructor; solve_elem_of.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
349 350
Lemma sts_update_frag_up s1 S2 T :
  closed S2 T  s1  S2  sts_frag_up s1 T ~~> sts_frag S2 T.
Ralf Jung's avatar
Ralf Jung committed
351
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
352 353 354 355 356 357 358 359 360 361
  intros; by apply sts_update_frag; [|intros ?; eauto using closed_steps].
Qed.

(** Inclusion *)
Lemma sts_frag_included S1 S2 T1 T2 :
  closed S2 T2 
  sts_frag S1 T1  sts_frag S2 T2 
  (closed S1 T1   Tf, T2  T1  Tf  T1  Tf    S2  S1  up_set S2 Tf).
Proof. (* This should use some general properties of DRAs. To be improved
when we have RAs back *)
362
  move=>Hcl2. split.
Robbert Krebbers's avatar
Robbert Krebbers committed
363
  - intros [[[Sf Tf|Sf Tf] vf Hvf] EQ].
364
    { exfalso. inversion_clear EQ as [Hv EQ']. apply EQ' in Hcl2. simpl in Hcl2.
365
      inversion Hcl2. }
366 367 368
    inversion_clear EQ as [Hv EQ'].
    move:(EQ' Hcl2)=>{EQ'} EQ. inversion_clear EQ as [|? ? ? ? HT HS].
    destruct Hv as [Hv _]. move:(Hv Hcl2)=>{Hv} [/= Hcl1  [Hclf Hdisj]].
369 370 371
    apply Hvf in Hclf. simpl in Hclf. clear Hvf.
    inversion_clear Hdisj. split; last (exists Tf; split_ands); [done..|].
    apply (anti_symm ()).
372
    + move=>s HS2. apply elem_of_intersection. split; first by apply HS.
Robbert Krebbers's avatar
Robbert Krebbers committed
373
      by apply subseteq_up_set.
374
    + move=>s /elem_of_intersection [HS1 Hscl]. apply HS. split; first done.
375
      destruct Hscl as [s' [Hsup Hs']].
Robbert Krebbers's avatar
Robbert Krebbers committed
376
      eapply closed_steps; last (hnf in Hsup; eexact Hsup); first done.
377
      solve_elem_of +HS Hs'.
Ralf Jung's avatar
Ralf Jung committed
378
  - intros (Hcl1 & Tf & Htk & Hf & Hs).
Robbert Krebbers's avatar
Robbert Krebbers committed
379
    exists (sts_frag (up_set S2 Tf) Tf).
380 381
    split; first split; simpl;[|done|].
    + intros _. split_ands; first done.
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383
      * apply closed_up_set; last by eapply closed_ne.
        move=>s Hs2. move:(closed_disjoint _ _ Hcl2 _ Hs2).
Ralf Jung's avatar
Ralf Jung committed
384
        solve_elem_of +Htk.
Robbert Krebbers's avatar
Robbert Krebbers committed
385
      * constructor; last done. rewrite -Hs. by eapply closed_ne.
386 387 388
    + intros _. constructor; [ solve_elem_of +Htk | done].
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
389 390 391
Lemma sts_frag_included' S1 S2 T :
  closed S2 T  closed S1 T  S2  S1  up_set S2  
  sts_frag S1 T  sts_frag S2 T.
392
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
393 394
  intros. apply sts_frag_included; split_ands; auto.
  exists ; split_ands; done || solve_elem_of+.
395
Qed.
396
End stsRA.