upred.v 31.5 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Export cmra updates.
2
From iris.bi Require Export derived_connectives updates.
3
From stdpp Require Import finite.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5
6
7
Local Hint Extern 1 (_  _) => etrans; [eassumption|].
Local Hint Extern 1 (_  _) => etrans; [|eassumption].
Local Hint Extern 10 (_  _) => omega.
8

Ralf Jung's avatar
Ralf Jung committed
9
10
11
12
13
(** The basic definition of the uPred type, its metric and functor laws.
    You probably do not want to import this file. Instead, import
    base_logic.base_logic; that will also give you all the primitive
    and many derived laws for the logic. *)

Ralf Jung's avatar
Ralf Jung committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
(* A good way of understanding this definition of the uPred OFE is to
   consider the OFE uPred0 of monotonous SProp predicates. That is,
   uPred0 is the OFE of non-expansive functions from M to SProp that
   are monotonous with respect to CMRA inclusion. This notion of
   monotonicity has to be stated in the SProp logic. Together with the
   usual closedness property of SProp, this gives exactly uPred_mono.

   Then, we quotient uPred0 *in the sProp logic* with respect to
   equivalence on valid elements of M. That is, we quotient with
   respect to the following *sProp* equivalence relation:
     P1 ≡ P2 := ∀ x, ✓ x → (P1(x) ↔ P2(x))       (1)
   When seen from the ambiant logic, obtaining this quotient requires
   definig both a custom Equiv and Dist.


   It is worth noting that this equivalence relation admits canonical
   representatives. More precisely, one can show that every
   equivalence class contains exactly one element P0 such that:
Ralf Jung's avatar
Ralf Jung committed
32
33
34
35
36
     ∀ x, (✓ x → P0(x)) → P0(x)                 (2)
   (Again, this assertion has to be understood in sProp). Intuitively,
   this says that P0 trivially holds whenever the resource is invalid.
   Starting from any element P, one can find this canonical
   representative by choosing:
Ralf Jung's avatar
Ralf Jung committed
37
38
39
40
41
42
43
44
45
46
47
48
     P0(x) := ✓ x → P(x)                        (3)

   Hence, as an alternative definition of uPred, we could use the set
   of canonical representatives (i.e., the subtype of monotonous
   sProp predicates that verify (2)). This alternative definition would
   save us from using a quotient. However, the definitions of the various
   connectives would get more complicated, because we have to make sure
   they all verify (2), which sometimes requires some adjustments. We
   would moreover need to prove one more property for every logical
   connective.
 *)

49
50
Record uPred (M : ucmraT) : Type := IProp {
  uPred_holds :> nat  M  Prop;
51

52
53
  uPred_mono n1 n2 x1 x2 :
    uPred_holds n1 x1  x1 {n1} x2  n2  n1  uPred_holds n2 x2
54
55
56
57
58
}.
Arguments uPred_holds {_} _ _ _ : simpl never.
Add Printing Constructor uPred.
Instance: Params (@uPred_holds) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
59
Bind Scope bi_scope with uPred.
60
61
62
63
64
65
66
67
68
69
70
Arguments uPred_holds {_} _%I _ _.

Section cofe.
  Context {M : ucmraT}.

  Inductive uPred_equiv' (P Q : uPred M) : Prop :=
    { uPred_in_equiv :  n x, {n} x  P n x  Q n x }.
  Instance uPred_equiv : Equiv (uPred M) := uPred_equiv'.
  Inductive uPred_dist' (n : nat) (P Q : uPred M) : Prop :=
    { uPred_in_dist :  n' x, n'  n  {n'} x  P n' x  Q n' x }.
  Instance uPred_dist : Dist (uPred M) := uPred_dist'.
71
  Definition uPred_ofe_mixin : OfeMixin (uPred M).
72
73
74
75
76
77
78
79
80
81
82
83
  Proof.
    split.
    - intros P Q; split.
      + by intros HPQ n; split=> i x ??; apply HPQ.
      + intros HPQ; split=> n x ?; apply HPQ with n; auto.
    - intros n; split.
      + by intros P; split=> x i.
      + by intros P Q HPQ; split=> x i ??; symmetry; apply HPQ.
      + intros P Q Q' HP HQ; split=> i x ??.
        by trans (Q i x);[apply HP|apply HQ].
    - intros n P Q HPQ; split=> i x ??; apply HPQ; auto.
  Qed.
84
85
86
  Canonical Structure uPredC : ofeT := OfeT (uPred M) uPred_ofe_mixin.

  Program Definition uPred_compl : Compl uPredC := λ c,
87
    {| uPred_holds n x :=  n', n'  n  {n'}x  c n' n' x |}.
88
  Next Obligation.
89
90
91
    move=> /= c n1 n2 x1 x2 HP Hx12 Hn12 n3 Hn23 Hv. eapply uPred_mono.
    eapply HP, cmra_validN_includedN, cmra_includedN_le=>//; lia.
    eapply cmra_includedN_le=>//; lia. done.
92
93
94
  Qed.
  Global Program Instance uPred_cofe : Cofe uPredC := {| compl := uPred_compl |}.
  Next Obligation.
95
96
    intros n c; split=>i x Hin Hv.
    etrans; [|by symmetry; apply (chain_cauchy c i n)]. split=>H; [by apply H|].
97
    repeat intro. apply (chain_cauchy c n' i)=>//. by eapply uPred_mono.
98
  Qed.
99
100
101
102
103
104
105
106
107
108
109
110
111
End cofe.
Arguments uPredC : clear implicits.

Instance uPred_ne {M} (P : uPred M) n : Proper (dist n ==> iff) (P n).
Proof.
  intros x1 x2 Hx; split=> ?; eapply uPred_mono; eauto; by rewrite Hx.
Qed.
Instance uPred_proper {M} (P : uPred M) n : Proper (() ==> iff) (P n).
Proof. by intros x1 x2 Hx; apply uPred_ne, equiv_dist. Qed.

Lemma uPred_holds_ne {M} (P Q : uPred M) n1 n2 x :
  P {n2} Q  n2  n1  {n2} x  Q n1 x  P n2 x.
Proof.
112
  intros [Hne] ???. eapply Hne; try done. eauto using uPred_mono, cmra_validN_le.
113
114
Qed.

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
(* Equivalence to the definition of uPred in the appendix. *)
Lemma uPred_alt {M : ucmraT} (P: nat  M  Prop) :
  ( n1 n2 x1 x2, P n1 x1  x1 {n1} x2  n2  n1  P n2 x2) 
  ( ( x n1 n2, n2  n1  P n1 x  P n2 x) (* Pointwise down-closed *)
   ( n x1 x2, x1 {n} x2   m, m  n  P m x1  P m x2) (* Non-expansive *)
   ( n x1 x2, x1 {n} x2   m, m  n  P m x1  P m x2) (* Monotonicity *)
  ).
Proof.
  (* Provide this lemma to eauto. *)
  assert ( n1 n2 (x1 x2 : M), n2  n1  x1 {n1} x2  x1 {n2} x2).
  { intros ????? H. eapply cmra_includedN_le; last done. by rewrite H. }
  (* Now go ahead. *)
  split.
  - intros Hupred. repeat split; eauto using cmra_includedN_le.
  - intros (Hdown & _ & Hmono) **. eapply Hmono; [done..|]. eapply Hdown; done.
130
131
132
133
Qed.

(** functor *)
Program Definition uPred_map {M1 M2 : ucmraT} (f : M2 -n> M1)
134
  `{!CmraMorphism f} (P : uPred M1) :
135
  uPred M2 := {| uPred_holds n x := P n (f x) |}.
136
Next Obligation. naive_solver eauto using uPred_mono, cmra_morphism_monotoneN. Qed.
137
138

Instance uPred_map_ne {M1 M2 : ucmraT} (f : M2 -n> M1)
139
  `{!CmraMorphism f} n : Proper (dist n ==> dist n) (uPred_map f).
140
141
Proof.
  intros x1 x2 Hx; split=> n' y ??.
142
  split; apply Hx; auto using cmra_morphism_validN.
143
144
145
146
Qed.
Lemma uPred_map_id {M : ucmraT} (P : uPred M): uPred_map cid P  P.
Proof. by split=> n x ?. Qed.
Lemma uPred_map_compose {M1 M2 M3 : ucmraT} (f : M1 -n> M2) (g : M2 -n> M3)
147
    `{!CmraMorphism f, !CmraMorphism g} (P : uPred M3):
148
149
150
  uPred_map (g  f) P  uPred_map f (uPred_map g P).
Proof. by split=> n x Hx. Qed.
Lemma uPred_map_ext {M1 M2 : ucmraT} (f g : M1 -n> M2)
151
      `{!CmraMorphism f} `{!CmraMorphism g}:
152
153
  ( x, f x  g x)   x, uPred_map f x  uPred_map g x.
Proof. intros Hf P; split=> n x Hx /=; by rewrite /uPred_holds /= Hf. Qed.
154
Definition uPredC_map {M1 M2 : ucmraT} (f : M2 -n> M1) `{!CmraMorphism f} :
155
156
  uPredC M1 -n> uPredC M2 := CofeMor (uPred_map f : uPredC M1  uPredC M2).
Lemma uPredC_map_ne {M1 M2 : ucmraT} (f g : M2 -n> M1)
157
    `{!CmraMorphism f, !CmraMorphism g} n :
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
  f {n} g  uPredC_map f {n} uPredC_map g.
Proof.
  by intros Hfg P; split=> n' y ??;
    rewrite /uPred_holds /= (dist_le _ _ _ _(Hfg y)); last lia.
Qed.

Program Definition uPredCF (F : urFunctor) : cFunctor := {|
  cFunctor_car A B := uPredC (urFunctor_car F B A);
  cFunctor_map A1 A2 B1 B2 fg := uPredC_map (urFunctor_map F (fg.2, fg.1))
|}.
Next Obligation.
  intros F A1 A2 B1 B2 n P Q HPQ.
  apply uPredC_map_ne, urFunctor_ne; split; by apply HPQ.
Qed.
Next Obligation.
  intros F A B P; simpl. rewrite -{2}(uPred_map_id P).
  apply uPred_map_ext=>y. by rewrite urFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' P; simpl. rewrite -uPred_map_compose.
  apply uPred_map_ext=>y; apply urFunctor_compose.
Qed.

Instance uPredCF_contractive F :
  urFunctorContractive F  cFunctorContractive (uPredCF F).
Proof.
184
185
  intros ? A1 A2 B1 B2 n P Q HPQ. apply uPredC_map_ne, urFunctor_contractive.
  destruct n; split; by apply HPQ.
186
187
188
189
190
Qed.

(** logical entailement *)
Inductive uPred_entails {M} (P Q : uPred M) : Prop :=
  { uPred_in_entails :  n x, {n} x  P n x  Q n x }.
191
Hint Resolve uPred_mono : uPred_def.
192

Robbert Krebbers's avatar
Robbert Krebbers committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
(** logical connectives *)
Program Definition uPred_pure_def {M} (φ : Prop) : uPred M :=
  {| uPred_holds n x := φ |}.
Solve Obligations with done.
Definition uPred_pure_aux : seal (@uPred_pure_def). by eexists. Qed.
Definition uPred_pure {M} := unseal uPred_pure_aux M.
Definition uPred_pure_eq :
  @uPred_pure = @uPred_pure_def := seal_eq uPred_pure_aux.

Definition uPred_emp {M} : uPred M := uPred_pure True.

Program Definition uPred_and_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_and_aux : seal (@uPred_and_def). by eexists. Qed.
Definition uPred_and {M} := unseal uPred_and_aux M.
Definition uPred_and_eq: @uPred_and = @uPred_and_def := seal_eq uPred_and_aux.

Program Definition uPred_or_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_or_aux : seal (@uPred_or_def). by eexists. Qed.
Definition uPred_or {M} := unseal uPred_or_aux M.
Definition uPred_or_eq: @uPred_or = @uPred_or_def := seal_eq uPred_or_aux.

Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       x  x'  n'  n  {n'} x'  P n' x'  Q n' x' |}.
Next Obligation.
222
  intros M P Q n1 n1' x1 x1' HPQ [x2 Hx1'] Hn1 n2 x3 [x4 Hx3] ?; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  rewrite Hx3 (dist_le _ _ _ _ Hx1'); auto. intros ??.
  eapply HPQ; auto. exists (x2  x4); by rewrite assoc.
Qed.
Definition uPred_impl_aux : seal (@uPred_impl_def). by eexists. Qed.
Definition uPred_impl {M} := unseal uPred_impl_aux M.
Definition uPred_impl_eq :
  @uPred_impl = @uPred_impl_def := seal_eq uPred_impl_aux.

Program Definition uPred_forall_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_forall_aux : seal (@uPred_forall_def). by eexists. Qed.
Definition uPred_forall {M A} := unseal uPred_forall_aux M A.
Definition uPred_forall_eq :
  @uPred_forall = @uPred_forall_def := seal_eq uPred_forall_aux.

Program Definition uPred_exist_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
Definition uPred_exist_aux : seal (@uPred_exist_def). by eexists. Qed.
Definition uPred_exist {M A} := unseal uPred_exist_aux M A.
Definition uPred_exist_eq: @uPred_exist = @uPred_exist_def := seal_eq uPred_exist_aux.

Program Definition uPred_internal_eq_def {M} {A : ofeT} (a1 a2 : A) : uPred M :=
  {| uPred_holds n x := a1 {n} a2 |}.
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
Definition uPred_internal_eq_aux : seal (@uPred_internal_eq_def). by eexists. Qed.
Definition uPred_internal_eq {M A} := unseal uPred_internal_eq_aux M A.
Definition uPred_internal_eq_eq:
  @uPred_internal_eq = @uPred_internal_eq_def := seal_eq uPred_internal_eq_aux.

Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x1 x2, x {n} x1  x2  P n x1  Q n x2 |}.
Next Obligation.
257
  intros M P Q n1 n2 x y (x1&x2&Hx&?&?) [z Hy] Hn.
Robbert Krebbers's avatar
Robbert Krebbers committed
258
  exists x1, (x2  z); split_and?; eauto using uPred_mono, cmra_includedN_l.
259
  eapply dist_le, Hn. by rewrite Hy Hx assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
260
261
262
263
264
265
266
267
268
Qed.
Definition uPred_sep_aux : seal (@uPred_sep_def). by eexists. Qed.
Definition uPred_sep {M} := unseal uPred_sep_aux M.
Definition uPred_sep_eq: @uPred_sep = @uPred_sep_def := seal_eq uPred_sep_aux.

Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       n'  n  {n'} (x  x')  P n' x'  Q n' (x  x') |}.
Next Obligation.
269
270
  intros M P Q n1 n1' x1 x1' HPQ ? Hn n3 x3 ???; simpl in *.
  eapply uPred_mono with n3 (x1  x3);
Robbert Krebbers's avatar
Robbert Krebbers committed
271
272
273
274
275
276
277
    eauto using cmra_validN_includedN, cmra_monoN_r, cmra_includedN_le.
Qed.
Definition uPred_wand_aux : seal (@uPred_wand_def). by eexists. Qed.
Definition uPred_wand {M} := unseal uPred_wand_aux M.
Definition uPred_wand_eq :
  @uPred_wand = @uPred_wand_def := seal_eq uPred_wand_aux.

278
279
280
(* Equivalently, this could be `∀ y, P n y`.  That's closer to the intuition
   of "embedding the step-indexed logic in Iris", but the two are equivalent
   because Iris is afine.  The following is easier to work with. *)
281
282
Program Definition uPred_plainly_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := P n ε |}.
283
Solve Obligations with naive_solver eauto using uPred_mono, ucmra_unit_validN.
284
285
286
287
288
Definition uPred_plainly_aux : seal (@uPred_plainly_def). by eexists. Qed.
Definition uPred_plainly {M} := unseal uPred_plainly_aux M.
Definition uPred_plainly_eq :
  @uPred_plainly = @uPred_plainly_def := seal_eq uPred_plainly_aux.

Robbert Krebbers's avatar
Robbert Krebbers committed
289
290
291
292
293
294
295
296
297
298
299
300
301
Program Definition uPred_persistently_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := P n (core x) |}.
Next Obligation.
  intros M; naive_solver eauto using uPred_mono, @cmra_core_monoN.
Qed.
Definition uPred_persistently_aux : seal (@uPred_persistently_def). by eexists. Qed.
Definition uPred_persistently {M} := unseal uPred_persistently_aux M.
Definition uPred_persistently_eq :
  @uPred_persistently = @uPred_persistently_def := seal_eq uPred_persistently_aux.

Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation.
302
  intros M P [|n1] [|n2] x1 x2; eauto using uPred_mono, cmra_includedN_S with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
304
305
306
307
308
309
310
311
Qed.
Definition uPred_later_aux : seal (@uPred_later_def). by eexists. Qed.
Definition uPred_later {M} := unseal uPred_later_aux M.
Definition uPred_later_eq :
  @uPred_later = @uPred_later_def := seal_eq uPred_later_aux.

Program Definition uPred_ownM_def {M : ucmraT} (a : M) : uPred M :=
  {| uPred_holds n x := a {n} x |}.
Next Obligation.
312
313
  intros M a n1 n2 x1 x [a' Hx1] [x2 Hx] Hn. eapply cmra_includedN_le=>//.
  exists (a'  x2). by rewrite Hx(assoc op) Hx1.
Robbert Krebbers's avatar
Robbert Krebbers committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
Qed.
Definition uPred_ownM_aux : seal (@uPred_ownM_def). by eexists. Qed.
Definition uPred_ownM {M} := unseal uPred_ownM_aux M.
Definition uPred_ownM_eq :
  @uPred_ownM = @uPred_ownM_def := seal_eq uPred_ownM_aux.

Program Definition uPred_cmra_valid_def {M} {A : cmraT} (a : A) : uPred M :=
  {| uPred_holds n x := {n} a |}.
Solve Obligations with naive_solver eauto 2 using cmra_validN_le.
Definition uPred_cmra_valid_aux : seal (@uPred_cmra_valid_def). by eexists. Qed.
Definition uPred_cmra_valid {M A} := unseal uPred_cmra_valid_aux M A.
Definition uPred_cmra_valid_eq :
  @uPred_cmra_valid = @uPred_cmra_valid_def := seal_eq uPred_cmra_valid_aux.

Program Definition uPred_bupd_def {M} (Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  k yf,
      k  n  {k} (x  yf)   x', {k} (x'  yf)  Q k x' |}.
Next Obligation.
332
  intros M Q n1 n2 x1 x2 HQ [x3 Hx] Hn k yf Hk.
Robbert Krebbers's avatar
Robbert Krebbers committed
333
334
335
  rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy.
  destruct (HQ k (x3  yf)) as (x'&?&?); [auto|by rewrite assoc|].
  exists (x'  x3); split; first by rewrite -assoc.
336
  eauto using uPred_mono, cmra_includedN_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Qed.
338
339
340
341
Definition uPred_bupd_aux {M} : seal (@uPred_bupd_def M). by eexists. Qed.
Instance uPred_bupd {M} : BUpd (uPred M) := unseal uPred_bupd_aux.
Definition uPred_bupd_eq {M} :
  @bupd _ uPred_bupd = @uPred_bupd_def M := seal_eq uPred_bupd_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
342
343
344
345
346

Module uPred_unseal.
Definition unseal_eqs :=
  (uPred_pure_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq,
  uPred_exist_eq, uPred_internal_eq_eq, uPred_sep_eq, uPred_wand_eq,
347
  uPred_plainly_eq, uPred_persistently_eq, uPred_later_eq, uPred_ownM_eq,
348
  uPred_cmra_valid_eq, @uPred_bupd_eq).
349
350
351
Ltac unseal := (* Coq unfold is used to circumvent bug #5699 in rewrite /foo *)
  unfold bi_emp; simpl;
  unfold uPred_emp, bi_pure, bi_and, bi_or, bi_impl, bi_forall, bi_exist,
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
352
  bi_internal_eq, bi_sep, bi_wand, bi_plainly, bi_persistently, sbi_later; simpl;
353
354
355
  unfold sbi_emp, sbi_pure, sbi_and, sbi_or, sbi_impl, sbi_forall, sbi_exist,
  sbi_internal_eq, sbi_sep, sbi_wand, sbi_plainly, sbi_persistently; simpl;
  rewrite !unseal_eqs /=.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
357
358
359
360
End uPred_unseal.
Import uPred_unseal.

Local Arguments uPred_holds {_} !_ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
361
Lemma uPred_bi_mixin (M : ucmraT) : BiMixin (ofe_mixin_of (uPred M))
Robbert Krebbers's avatar
Robbert Krebbers committed
362
363
  uPred_entails uPred_emp uPred_pure uPred_and uPred_or uPred_impl
                (@uPred_forall M) (@uPred_exist M) (@uPred_internal_eq M)
364
                uPred_sep uPred_wand uPred_plainly uPred_persistently.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
Proof.
  split.
  - (* PreOrder uPred_entails *)
    split.
    + by intros P; split=> x i.
    + by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP.
  - (* (P ⊣⊢ Q) ↔ (P ⊢ Q) ∧ (Q ⊢ P) *)
    intros P Q. split.
    + intros HPQ; split; split=> x i; apply HPQ.
    + intros [HPQ HQP]; split=> x n; by split; [apply HPQ|apply HQP].
  - (* Proper (iff ==> dist n) (@uPred_pure M) *)
    intros φ1 φ2 Hφ. by unseal; split=> -[|n] ?; try apply Hφ.
  - (* NonExpansive2 uPred_and *)
    intros n P P' HP Q Q' HQ; unseal; split=> x n' ??.
    split; (intros [??]; split; [by apply HP|by apply HQ]).
  - (* NonExpansive2 uPred_or *)
    intros n P P' HP Q Q' HQ; split=> x n' ??.
    unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]).
  - (* NonExpansive2 uPred_impl *)
    intros n P P' HP Q Q' HQ; split=> x n' ??.
    unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto.
  - (* Proper (pointwise_relation A (dist n) ==> dist n) uPred_forall *)
    by intros A n Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
  - (* Proper (pointwise_relation A (dist n) ==> dist n) uPred_exist *)
    intros A n Ψ1 Ψ2 HΨ.
    unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ.
  - (* NonExpansive2 uPred_sep *)
    intros n P P' HP Q Q' HQ; split=> n' x ??.
    unseal; split; intros (x1&x2&?&?&?); ofe_subst x;
      exists x1, x2; split_and!; try (apply HP || apply HQ);
      eauto using cmra_validN_op_l, cmra_validN_op_r.
  - (* NonExpansive2 uPred_wand *)
    intros n P P' HP Q Q' HQ; split=> n' x ??.
    unseal; split; intros HPQ x' n'' ???;
      apply HQ, HPQ, HP; eauto using cmra_validN_op_r.
400
401
402
  - (* NonExpansive uPred_plainly *)
    intros n P1 P2 HP.
    unseal; split=> n' x; split; apply HP; eauto using @ucmra_unit_validN.
Robbert Krebbers's avatar
Robbert Krebbers committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
  - (* NonExpansive uPred_persistently *)
    intros n P1 P2 HP.
    unseal; split=> n' x; split; apply HP; eauto using @cmra_core_validN.
  - (* NonExpansive2 (@uPred_internal_eq M A) *)
    intros A n x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *.
    + by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto.
    + by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto.
  - (* φ → P ⊢ ⌜φ⌝ *)
    intros P φ ?. unseal; by split.
  - (* (φ → True ⊢ P) → ⌜φ⌝ ⊢ P *)
    intros φ P. unseal=> HP; split=> n x ??. by apply HP.
  - (* (∀ x : A, ⌜φ x⌝) ⊢ ⌜∀ x : A, φ x⌝ *)
    by unseal.
  - (* P ∧ Q ⊢ P *)
    intros P Q. unseal; by split=> n x ? [??].
  - (* P ∧ Q ⊢ Q *)
    intros P Q. unseal; by split=> n x ? [??].
  - (* (P ⊢ Q) → (P ⊢ R) → P ⊢ Q ∧ R *)
    intros P Q R HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR].
  - (* P ⊢ P ∨ Q *)
    intros P Q. unseal; split=> n x ??; left; auto.
  - (* Q ⊢ P ∨ Q *)
    intros P Q. unseal; split=> n x ??; right; auto.
  - (* (P ⊢ R) → (Q ⊢ R) → P ∨ Q ⊢ R *)
    intros P Q R HP HQ. unseal; split=> n x ? [?|?]. by apply HP. by apply HQ.
  - (* (P ∧ Q ⊢ R) → P ⊢ Q → R. *)
    intros P Q R. unseal => HQ; split=> n x ?? n' x' ????. apply HQ;
430
      naive_solver eauto using uPred_mono, cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
  - (* (P ⊢ Q → R) → P ∧ Q ⊢ R *)
    intros P Q R. unseal=> HP; split=> n x ? [??]. apply HP with n x; auto.
  - (* (∀ a, P ⊢ Ψ a) → P ⊢ ∀ a, Ψ a *)
    intros A P Ψ. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ.
  - (* (∀ a, Ψ a) ⊢ Ψ a *)
    intros A Ψ a. unseal; split=> n x ? HP; apply HP.
  - (* Ψ a ⊢ ∃ a, Ψ a *)
    intros A Ψ a. unseal; split=> n x ??; by exists a.
  - (* (∀ a, Ψ a ⊢ Q) → (∃ a, Ψ a) ⊢ Q *)
    intros A Ψ Q. unseal; intros HΨ; split=> n x ? [a ?]; by apply HΨ with a.
  - (* P ⊢ a ≡ a *)
    intros A P a. unseal; by split=> n x ?? /=.
  - (* a ≡ b ⊢ Ψ a → Ψ b *)
    intros A a b Ψ Hnonexp.
    unseal; split=> n x ? Hab n' x' ??? HΨ. eapply Hnonexp with n a; auto.
  - (* (∀ x, f x ≡ g x) ⊢ f ≡ g *)
    by unseal.
  - (* `x ≡ `y ⊢ x ≡ y *)
    by unseal.
  - (* Discrete a → a ≡ b ⊣⊢ ⌜a ≡ b⌝ *)
    intros A a b ?. unseal; split=> n x ?; by apply (discrete_iff n).
  - (* (P ⊢ Q) → (P' ⊢ Q') → P ∗ P' ⊢ Q ∗ Q' *)
    intros P P' Q Q' HQ HQ'; unseal.
    split; intros n' x ? (x1&x2&?&?&?); exists x1,x2; ofe_subst x;
      eauto 7 using cmra_validN_op_l, cmra_validN_op_r, uPred_in_entails.
  - (* P ⊢ emp ∗ P *)
    intros P. rewrite /uPred_emp. unseal; split=> n x ?? /=.
    exists (core x), x. by rewrite cmra_core_l.
  - (* emp ∗ P ⊢ P *)
    intros P. unseal; split; intros n x ? (x1&x2&?&_&?); ofe_subst;
      eauto using uPred_mono, cmra_includedN_r.
  - (* P ∗ Q ⊢ Q ∗ P *)
    intros P Q. unseal; split; intros n x ? (x1&x2&?&?&?).
    exists x2, x1; by rewrite (comm op).
  - (* (P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R) *)
    intros P Q R. unseal; split; intros n x ? (x1&x2&Hx&(y1&y2&Hy&?&?)&?).
    exists y1, (y2  x2); split_and?; auto.
    + by rewrite (assoc op) -Hy -Hx.
    + by exists y2, x2.
  - (* (P ∗ Q ⊢ R) → P ⊢ Q -∗ R *)
    intros P Q R. unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto.
    exists x, x'; split_and?; auto.
473
    eapply uPred_mono; eauto using cmra_validN_op_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
474
475
476
  - (* (P ⊢ Q -∗ R) → P ∗ Q ⊢ R *)
    intros P Q R. unseal=> HPQR. split; intros n x ? (?&?&?&?&?). ofe_subst.
    eapply HPQR; eauto using cmra_validN_op_l.
477
478
479
480
481
482
483
484
485
486
487
488
489
  - (* (P ⊢ Q) → bi_plainly P ⊢ bi_plainly Q *)
    intros P QR HP. unseal; split=> n x ? /=. by apply HP, ucmra_unit_validN.
  - (* bi_plainly P ⊢ bi_persistently P *)
    unseal; split; simpl; eauto using uPred_mono, @ucmra_unit_leastN.
  - (* bi_plainly P ⊢ bi_plainly (bi_plainly P) *)
    unseal; split=> n x ?? //.
  - (* (∀ a, bi_plainly (Ψ a)) ⊢ bi_plainly (∀ a, Ψ a) *)
    by unseal.
  - (* bi_plainly ((P → Q) ∧ (Q → P)) ⊢ P ≡ Q *)
    unseal; split=> n x ? /= HPQ; split=> n' x' ? HP;
    split; eapply HPQ; eauto using @ucmra_unit_least.
  - (* (bi_plainly P → bi_persistently Q) ⊢ bi_persistently (bi_plainly P → Q) *)
    unseal; split=> /= n x ? HPQ n' x' ????.
490
    eapply uPred_mono with n' (core x)=>//; [|by apply cmra_included_includedN].
491
492
493
    apply (HPQ n' x); eauto using cmra_validN_le.
  - (* (bi_plainly P → bi_plainly Q) ⊢ bi_plainly (bi_plainly P → Q) *)
    unseal; split=> /= n x ? HPQ n' x' ????.
494
    eapply uPred_mono with n' ε=>//; [|by apply cmra_included_includedN].
495
496
497
498
499
500
501
    apply (HPQ n' x); eauto using cmra_validN_le.
  - (* P ⊢ bi_plainly emp (ADMISSIBLE) *)
    by unseal.
  - (* bi_plainly P ∗ Q ⊢ bi_plainly P *)
    intros P Q. move: (uPred_persistently P)=> P'.
    unseal; split; intros n x ? (x1&x2&?&?&_); ofe_subst;
      eauto using uPred_mono, cmra_includedN_l.
502
  - (* (P ⊢ Q) → bi_persistently P ⊢ bi_persistently Q *)
Robbert Krebbers's avatar
Robbert Krebbers committed
503
    intros P QR HP. unseal; split=> n x ? /=. by apply HP, cmra_core_validN.
504
  - (* bi_persistently P ⊢ bi_persistently (bi_persistently P) *)
Robbert Krebbers's avatar
Robbert Krebbers committed
505
    intros P. unseal; split=> n x ?? /=. by rewrite cmra_core_idemp.
506
507
  - (* bi_plainly (bi_persistently P) ⊢ bi_plainly P (ADMISSIBLE) *)
    intros P. unseal; split=> n  x ?? /=. by rewrite -(core_id_core ε).
508
  - (* (∀ a, bi_persistently (Ψ a)) ⊢ bi_persistently (∀ a, Ψ a) *)
Robbert Krebbers's avatar
Robbert Krebbers committed
509
    by unseal.
510
  - (* bi_persistently (∃ a, Ψ a) ⊢ ∃ a, bi_persistently (Ψ a) *)
Robbert Krebbers's avatar
Robbert Krebbers committed
511
    by unseal.
512
  - (* bi_persistently P ∗ Q ⊢ bi_persistently P (ADMISSIBLE) *)
Robbert Krebbers's avatar
Robbert Krebbers committed
513
514
515
    intros P Q. move: (uPred_persistently P)=> P'.
    unseal; split; intros n x ? (x1&x2&?&?&_); ofe_subst;
      eauto using uPred_mono, cmra_includedN_l.
516
  - (* bi_persistently P ∧ Q ⊢ (emp ∧ P) ∗ Q *)
Robbert Krebbers's avatar
Robbert Krebbers committed
517
518
    intros P Q. unseal; split=> n x ? [??]; simpl in *.
    exists (core x), x; rewrite ?cmra_core_l; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
519
520
Qed.

Ralf Jung's avatar
Ralf Jung committed
521
Lemma uPred_sbi_mixin (M : ucmraT) : SbiMixin
522
  uPred_entails uPred_pure uPred_or uPred_impl
Robbert Krebbers's avatar
Robbert Krebbers committed
523
  (@uPred_forall M) (@uPred_exist M) (@uPred_internal_eq M)
524
  uPred_sep uPred_plainly uPred_persistently uPred_later.
Robbert Krebbers's avatar
Robbert Krebbers committed
525
526
Proof.
  split.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
527
  - (* Contractive sbi_later *)
Robbert Krebbers's avatar
Robbert Krebbers committed
528
529
530
531
532
533
534
535
536
537
538
    unseal; intros [|n] P Q HPQ; split=> -[|n'] x ?? //=; try omega.
    apply HPQ; eauto using cmra_validN_S.
  - (* Next x ≡ Next y ⊢ ▷ (x ≡ y) *)
    by unseal.
  - (* ▷ (x ≡ y) ⊢ Next x ≡ Next y *)
    by unseal.
  - (* (P ⊢ Q) → ▷ P ⊢ ▷ Q *)
    intros P Q.
    unseal=> HP; split=>-[|n] x ??; [done|apply HP; eauto using cmra_validN_S].
  - (* (▷ P → P) ⊢ P *)
    intros P. unseal; split=> n x ? HP; induction n as [|n IH]; [by apply HP|].
539
    apply HP, IH, uPred_mono with (S n) x; eauto using cmra_validN_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
540
541
542
543
544
545
546
547
548
549
550
551
552
  - (* (∀ a, ▷ Φ a) ⊢ ▷ ∀ a, Φ a *)
    intros A Φ. unseal; by split=> -[|n] x.
  - (* (▷ ∃ a, Φ a) ⊢ ▷ False ∨ (∃ a, ▷ Φ a) *)
    intros A Φ. unseal; split=> -[|[|n]] x /=; eauto.
  - (* ▷ (P ∗ Q) ⊢ ▷ P ∗ ▷ Q *)
    intros P Q. unseal; split=> -[|n] x ? /=.
    { by exists x, (core x); rewrite cmra_core_r. }
    intros (x1&x2&Hx&?&?); destruct (cmra_extend n x x1 x2)
      as (y1&y2&Hx'&Hy1&Hy2); eauto using cmra_validN_S; simpl in *.
    exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1 Hy2].
  - (* ▷ P ∗ ▷ Q ⊢ ▷ (P ∗ Q) *)
    intros P Q. unseal; split=> -[|n] x ? /=; [done|intros (x1&x2&Hx&?&?)].
    exists x1, x2; eauto using dist_S.
553
554
555
556
  - (* ▷ bi_plainly P ⊢ bi_plainly (▷ P) *)
    by unseal.
  - (* bi_plainly (▷ P) ⊢ ▷ bi_plainly P *)
    by unseal.
557
  - (* ▷ bi_persistently P ⊢ bi_persistently (▷ P) *)
Robbert Krebbers's avatar
Robbert Krebbers committed
558
    by unseal.
559
  - (* bi_persistently (▷ P) ⊢ ▷ bi_persistently P *)
Robbert Krebbers's avatar
Robbert Krebbers committed
560
561
562
563
    by unseal.
  - (* ▷ P ⊢ ▷ False ∨ (▷ False → P) *)
    intros P. unseal; split=> -[|n] x ? /= HP; [by left|right].
    intros [|n'] x' ????; [|done].
564
    eauto using uPred_mono, cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
565
566
567
568
569
570
571
572
573
574
575
576
Qed.

Canonical Structure uPredI (M : ucmraT) : bi :=
  {| bi_ofe_mixin := ofe_mixin_of (uPred M); bi_bi_mixin := uPred_bi_mixin M |}.
Canonical Structure uPredSI (M : ucmraT) : sbi :=
  {| sbi_ofe_mixin := ofe_mixin_of (uPred M);
     sbi_bi_mixin := uPred_bi_mixin M; sbi_sbi_mixin := uPred_sbi_mixin M |}.

Coercion uPred_valid {M} : uPred M  Prop := bi_valid.

(* Latest notation *)
Notation "✓ x" := (uPred_cmra_valid x) (at level 20) : bi_scope.
577

578
Module uPred.
Robbert Krebbers's avatar
Robbert Krebbers committed
579
580
Include uPred_unseal.
Section uPred.
581
Context {M : ucmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
582
Implicit Types φ : Prop.
583
Implicit Types P Q : uPred M.
Robbert Krebbers's avatar
Robbert Krebbers committed
584
585
586
Implicit Types A : Type.
Arguments uPred_holds {_} !_ _ _ /.
Hint Immediate uPred_in_entails.
587

Robbert Krebbers's avatar
Robbert Krebbers committed
588
Global Instance ownM_ne : NonExpansive (@uPred_ownM M).
589
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
590
591
  intros n a b Ha.
  unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia.
592
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
593
Global Instance ownM_proper: Proper (() ==> ()) (@uPred_ownM M) := ne_proper _.
594

Robbert Krebbers's avatar
Robbert Krebbers committed
595
596
Global Instance cmra_valid_ne {A : cmraT} :
  NonExpansive (@uPred_cmra_valid M A).
597
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
598
599
  intros n a b Ha; unseal; split=> n' x ? /=.
  by rewrite (dist_le _ _ _ _ Ha); last lia.
600
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
601
602
603
Global Instance cmra_valid_proper {A : cmraT} :
  Proper (() ==> ()) (@uPred_cmra_valid M A) := ne_proper _.

604
(** BI instances *)
605

606
607
608
609
610
Global Instance uPred_affine : BiAffine (uPredI M) | 0.
Proof. intros P. rewrite /Affine. by apply bi.pure_intro. Qed.

Global Instance uPred_plainly_exist_1 : BiPlainlyExist (uPredI M).
Proof. unfold BiPlainlyExist. by unseal. Qed.
611

Robbert Krebbers's avatar
Robbert Krebbers committed
612
(** Limits *)
Robbert Krebbers's avatar
Robbert Krebbers committed
613
614
Lemma entails_lim (cP cQ : chain (uPredC M)) :
  ( n, cP n  cQ n)  compl cP  compl cQ.
615
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
616
  intros Hlim; split=> n m ? HP.
617
618
619
  eapply uPred_holds_ne, Hlim, HP; eauto using conv_compl.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
620
621
622
623
624
625
626
627
628
629
630
(* Own *)
Lemma ownM_op (a1 a2 : M) :
  uPred_ownM (a1  a2)  uPred_ownM a1  uPred_ownM a2.
Proof.
  rewrite /bi_sep /=; unseal. split=> n x ?; split.
  - intros [z ?]; exists a1, (a2  z); split; [by rewrite (assoc op)|].
    split. by exists (core a1); rewrite cmra_core_r. by exists z.
  - intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1  z2).
    by rewrite (assoc op _ z1) -(comm op z1) (assoc op z1)
      -(assoc op _ a2) (comm op z1) -Hy1 -Hy2.
Qed.
631
632
Lemma persistently_ownM_core (a : M) :
  uPred_ownM a  bi_persistently (uPred_ownM (core a)).
Robbert Krebbers's avatar
Robbert Krebbers committed
633
634
635
636
Proof.
  rewrite /bi_persistently /=. unseal.
  split=> n x Hx /=. by apply cmra_core_monoN.
Qed.
637
Lemma ownM_unit : bi_valid (uPred_ownM (ε:M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
638
639
640
Proof. unseal; split=> n x ??; by  exists x; rewrite left_id. Qed.
Lemma later_ownM (a : M) :  uPred_ownM a   b, uPred_ownM b   (a  b).
Proof.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
641
  rewrite /bi_and /sbi_later /bi_exist /bi_internal_eq /=; unseal.
Robbert Krebbers's avatar
Robbert Krebbers committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
  split=> -[|n] x /= ? Hax; first by eauto using ucmra_unit_leastN.
  destruct Hax as [y ?].
  destruct (cmra_extend n x a y) as (a'&y'&Hx&?&?); auto using cmra_validN_S.
  exists a'. rewrite Hx. eauto using cmra_includedN_l.
Qed.

(* Valid *)
Lemma discrete_valid {A : cmraT} `{!CmraDiscrete A} (a : A) :
   a  (⌜✓ a : uPred M).
Proof. unseal. split=> n x _. by rewrite /= -cmra_discrete_valid_iff. Qed.
Lemma ownM_valid (a : M) : uPred_ownM a   a.
Proof.
  unseal; split=> n x Hv [a' ?]; ofe_subst; eauto using cmra_validN_op_l.
Qed.
Lemma cmra_valid_intro {A : cmraT} (a : A) :
   a  bi_valid (PROP:=uPredI M) ( a).
Proof. unseal=> ?; split=> n x ? _ /=; by apply cmra_valid_validN. Qed.
Lemma cmra_valid_elim {A : cmraT} (a : A) : ¬ {0} a   a  (False : uPred M).
Proof.
  intros Ha. unseal. split=> n x ??; apply Ha, cmra_validN_le with n; auto.
Qed.
663
Lemma plainly_cmra_valid_1 {A : cmraT} (a : A) :  a  bi_plainly ( a : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
664
665
666
667
668
669
670
671
672
673
Proof. by unseal. Qed.
Lemma cmra_valid_weaken {A : cmraT} (a b : A) :  (a  b)  ( a : uPred M).
Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed.

Lemma prod_validI {A B : cmraT} (x : A * B) :  x  ( x.1   x.2 : uPred M).
Proof. by unseal. Qed.
Lemma option_validI {A : cmraT} (mx : option A) :
   mx  match mx with Some x =>  x | None => True : uPred M end.
Proof. unseal. by destruct mx. Qed.

674
675
676
677
Lemma ofe_fun_validI `{Finite A} {B : A  ucmraT} (g : ofe_fun B) :
  ( g : uPred M)   i,  g i.
Proof. by uPred.unseal. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
678
(* Basic update modality *)
679
Global Instance bupd_facts : BUpdFacts (uPredI M).
Robbert Krebbers's avatar
Robbert Krebbers committed
680
Proof.
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
  split.
  - intros n P Q HPQ.
    unseal; split=> n' x; split; intros HP k yf ??;
    destruct (HP k yf) as (x'&?&?); auto;
    exists x'; split; auto; apply HPQ; eauto using cmra_validN_op_l.
  - unseal. split=> n x ? HP k yf ?; exists x; split; first done.
    apply uPred_mono with n x; eauto using cmra_validN_op_l.
  - unseal. intros HPQ; split=> n x ? HP k yf ??.
    destruct (HP k yf) as (x'&?&?); eauto.
    exists x'; split; eauto using uPred_in_entails, cmra_validN_op_l.
  - unseal; split; naive_solver.
  - unseal. split; intros n x ? (x1&x2&Hx&HP&?) k yf ??.
    destruct (HP k (x2  yf)) as (x'&?&?); eauto.
    { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. }
    exists (x'  x2); split; first by rewrite -assoc.
    exists x', x2. eauto using uPred_mono, cmra_validN_op_l, cmra_validN_op_r.
  - unseal; split => n x Hnx /= Hng.
    destruct (Hng n ε) as [? [_ Hng']]; try rewrite right_id; auto.
    eapply uPred_mono; eauto using ucmra_unit_leastN.
Robbert Krebbers's avatar
Robbert Krebbers committed
700
Qed.
701

Robbert Krebbers's avatar
Robbert Krebbers committed
702
703
704
705
706
707
708
709
710
711
Lemma bupd_ownM_updateP x (Φ : M  Prop) :
  x ~~>: Φ  uPred_ownM x ==  y, ⌜Φ y  uPred_ownM y.
Proof.
  intros Hup. unseal. split=> n x2 ? [x3 Hx] k yf ??.
  destruct (Hup k (Some (x3  yf))) as (y&?&?); simpl in *.
  { rewrite /= assoc -(dist_le _ _ _ _ Hx); auto. }
  exists (y  x3); split; first by rewrite -assoc.
  exists y; eauto using cmra_includedN_l.
Qed.
End uPred.
712
End uPred.