ltac_tactics.v 153 KB
Newer Older
1
From iris.proofmode Require Import coq_tactics reduction.
2
From iris.proofmode Require Import base intro_patterns spec_patterns sel_patterns.
3
From iris.bi Require Export bi telescopes.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
From stdpp Require Import namespaces.
From iris.proofmode Require Export classes notation.
From stdpp Require Import hlist pretty.
Set Default Proof Using "Type".
Export ident.

(** For most of the tactics, we want to have tight control over the order and
way in which type class inference is performed. To that end, many tactics make
use of [notypeclasses refine] and the [iSolveTC] tactic to manually invoke type
class inference.

The tactic [iSolveTC] does not use [apply _], as that often leads to issues
because it will try to solve all evars whose type is a typeclass, in
dependency order (according to Matthieu). If one fails, it aborts. However, we
generally rely on progress on the main goal to be solved to make progress
elsewhere. With [typeclasses eauto], that seems to work better.

A drawback of [typeclasses eauto] is that it is multi-success, i.e. whenever
subsequent tactics fail, it will backtrack to [typeclasses eauto] to try the
next type class instance. This is almost always undesired and leads to poor
performance and horrible error messages, so we wrap it in a [once]. *)
Ltac iSolveTC :=
  solve [once (typeclasses eauto)].

28 29 30
(** Tactic used for solving side-conditions arising from TC resolution in iMod
and iInv. *)
Ltac iSolveSideCondition :=
31
  split_and?; try solve [ fast_done | solve_ndisj ].
32

33 34 35 36 37 38 39
(** Used for printing [string]s and [ident]s. *)
Ltac pretty_ident H :=
  lazymatch H with
  | INamed ?H => H
  | ?H => H
  end.

40 41
(** * Misc *)

42 43 44 45 46 47 48
Ltac iGetCtx :=
  lazymatch goal with
  | |- envs_entails ?Δ _ => Δ
  | |- context[ envs_split _ _ ?Δ ] => Δ
  end.

Ltac iMissingHypsCore Δ Hs :=
49
  let Hhyps := pm_eval (envs_dom Δ) in
50 51
  eval vm_compute in (list_difference Hs Hhyps).

52 53 54 55
Ltac iMissingHyps Hs :=
  let Δ := iGetCtx in
  iMissingHypsCore Δ Hs.

56 57
Ltac iTypeOf H :=
  let Δ := match goal with |- envs_entails ?Δ _ => Δ end in
58
  pm_eval (envs_lookup H Δ).
59

60 61 62
Ltac iBiOfGoal :=
  match goal with |- @envs_entails ?PROP _ _ => PROP end.

63 64 65 66 67 68 69 70 71 72
Tactic Notation "iMatchHyp" tactic1(tac) :=
  match goal with
  | |- context[ environments.Esnoc _ ?x ?P ] => tac x P
  end.

(** * Start a proof *)
Tactic Notation "iStartProof" :=
  lazymatch goal with
  | |- envs_entails _ _ => idtac
  | |- ?φ => notypeclasses refine (as_emp_valid_2 φ _ _);
73
               [iSolveTC || fail "iStartProof: not a BI assertion"
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
               |apply tac_adequate]
  end.

(* Same as above, with 2 differences :
   - We can specify a BI in which we want the proof to be done
   - If the goal starts with a let or a ∀, they are automatically
     introduced. *)
Tactic Notation "iStartProof" uconstr(PROP) :=
  lazymatch goal with
  | |- @envs_entails ?PROP' _ _ =>
    (* This cannot be shared with the other [iStartProof], because
    type_term has a non-negligeable performance impact. *)
    let x := type_term (eq_refl : @eq Type PROP PROP') in idtac

  (* We eta-expand [as_emp_valid_2], in order to make sure that
     [iStartProof PROP] works even if [PROP] is the carrier type. In
     this case, typing this expression will end up unifying PROP with
     [bi_car _], and hence trigger the canonical structures mechanism
     to find the corresponding bi. *)
  | |- ?φ => notypeclasses refine ((λ P : PROP, @as_emp_valid_2 φ _ P) _ _ _);
94
               [iSolveTC || fail "iStartProof: not a BI assertion"
95 96 97 98
               |apply tac_adequate]
  end.

(** * Generate a fresh identifier *)
99 100 101 102 103
(** The tactic [iFresh] bumps the fresh name counter in the proof mode
environment and returns the old value.

Note that we use [Ltac] instead of [Tactic Notation] since [Tactic Notation]
tactics can only have side-effects, but cannot return terms. *)
104
Ltac iFresh :=
105 106 107 108
  (* We make use of an Ltac hack to allow the [iFresh] tactic to both have a
  side-effect (i.e. to bump the counter) and to return a value (the fresh name).
  We do this by wrapped the side-effect under a [match] in a let-binding. See
  https://stackoverflow.com/a/46178884 *)
109
  let start :=
110
    lazymatch goal with
111
    | _ => iStartProof
112
    end in
113 114 115 116
  let c :=
    lazymatch goal with
    | |- envs_entails (Envs _ _ ?c) _ => c
    end in
117
  let inc :=
118 119 120 121 122 123
    lazymatch goal with
    | |- envs_entails (Envs ?Δp ?Δs _) ?Q =>
      let c' := eval vm_compute in (Pos.succ c) in
      convert_concl_no_check (envs_entails (Envs Δp Δs c') Q)
    end in
  constr:(IAnon c).
124 125 126

(** * Context manipulation *)
Tactic Notation "iRename" constr(H1) "into" constr(H2) :=
127
  eapply tac_rename with H1 H2 _ _; (* (i:=H1) (j:=H2) *)
128 129 130
    [pm_reflexivity ||
     let H1 := pretty_ident H1 in
     fail "iRename:" H1 "not found"
131 132 133 134 135 136 137
    |pm_reduce;
     lazymatch goal with
       | |- False =>
         let H2 := pretty_ident H2 in
         fail "iRename:" H2 "not fresh"
       | _ => idtac (* subgoal *)
     end].
138

139 140 141
(** Elaborated selection patterns, unlike the type [sel_pat], contains
only specific identifiers, and no wildcards like `#` (with the
exception of the pure selection pattern `%`) *)
142
Inductive esel_pat :=
143
  | ESelPure
144
  | ESelIdent : (* whether the ident is intuitionistic *) bool  ident  esel_pat.
145

Ralf Jung's avatar
Ralf Jung committed
146
Local Ltac iElaborateSelPat_go pat Δ Hs :=
147 148 149
  lazymatch pat with
  | [] => eval cbv in Hs
  | SelPure :: ?pat =>  iElaborateSelPat_go pat Δ (ESelPure :: Hs)
150
  | SelIntuitionistic :: ?pat =>
151
    let Hs' := pm_eval (env_dom (env_intuitionistic Δ)) in
152
    let Δ' := pm_eval (envs_clear_intuitionistic Δ) in
153 154
    iElaborateSelPat_go pat Δ' ((ESelIdent true <$> Hs') ++ Hs)
  | SelSpatial :: ?pat =>
155 156
    let Hs' := pm_eval (env_dom (env_spatial Δ)) in
    let Δ' := pm_eval (envs_clear_spatial Δ) in
157 158
    iElaborateSelPat_go pat Δ' ((ESelIdent false <$> Hs') ++ Hs)
  | SelIdent ?H :: ?pat =>
159
    lazymatch pm_eval (envs_lookup_delete false H Δ) with
160
    | Some (?p,_,?Δ') =>  iElaborateSelPat_go pat Δ' (ESelIdent p H :: Hs)
161 162 163
    | None =>
      let H := pretty_ident H in
      fail "iElaborateSelPat:" H "not found"
164 165
    end
  end.
166 167
(** Converts a selection pattern (given as a string) to a list of
elaborated selection patterns. *)
168 169 170
Ltac iElaborateSelPat pat :=
  lazymatch goal with
  | |- envs_entails ?Δ _ =>
171
    let pat := sel_pat.parse pat in iElaborateSelPat_go pat Δ (@nil esel_pat)
172 173 174
  end.

Local Ltac iClearHyp H :=
175
  eapply tac_clear with H _ _; (* (i:=H) *)
176 177 178
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iClear:" H "not found"
179
    |pm_reduce; iSolveTC ||
180
     let H := pretty_ident H in
181 182
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iClear:" H ":" P "not affine and the goal not absorbing"
183
    |pm_reduce].
184

185 186 187 188 189 190
Local Ltac iClear_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => clear; iClear_go Hs
  | ESelIdent _ ?H :: ?Hs => iClearHyp H; iClear_go Hs
  end.
191
Tactic Notation "iClear" constr(Hs) :=
192
  iStartProof; let Hs := iElaborateSelPat Hs in iClear_go Hs.
193 194 195 196

Tactic Notation "iClear" "(" ident_list(xs) ")" constr(Hs) :=
  iClear Hs; clear xs.

197
(** ** Simplification *)
198
Tactic Notation "iEval" tactic3(t) :=
199 200 201 202 203 204 205 206 207 208
  iStartProof;
  eapply tac_eval;
    [let x := fresh in intros x; t; unfold x; reflexivity
    |].

Local Ltac iEval_go t Hs :=
  lazymatch Hs with
  | [] => idtac
  | ESelPure :: ?Hs => fail "iEval: %: unsupported selection pattern"
  | ESelIdent _ ?H :: ?Hs =>
209
    eapply tac_eval_in with H _ _ _;
210 211
      [pm_reflexivity || let H := pretty_ident H in fail "iEval:" H "not found"
      |let x := fresh in intros x; t; unfold x; reflexivity
212
      |pm_reduce; iEval_go t Hs]
213 214
  end.

215
Tactic Notation "iEval" tactic3(t) "in" constr(Hs) :=
216 217 218 219 220 221 222 223 224 225 226 227 228
  iStartProof; let Hs := iElaborateSelPat Hs in iEval_go t Hs.

Tactic Notation "iSimpl" := iEval (simpl).
Tactic Notation "iSimpl" "in" constr(H) := iEval (simpl) in H.

(* It would be nice to also have an `iSsrRewrite`, however, for this we need to
pass arguments to Ssreflect's `rewrite` like `/= foo /bar` in Ltac, see:

  https://sympa.inria.fr/sympa/arc/coq-club/2018-01/msg00000.html

PMP told me (= Robbert) in person that this is not possible with the current
Ltac, but it may be possible in Ltac2. *)

229 230
(** * Assumptions *)
Tactic Notation "iExact" constr(H) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
231
  eapply tac_assumption with H _ _; (* (i:=H) *)
232
    [pm_reflexivity ||
233
     let H := pretty_ident H in
234
     fail "iExact:" H "not found"
235
    |iSolveTC ||
236
     let H := pretty_ident H in
237 238
     let P := match goal with |- FromAssumption _ ?P _ => P end in
     fail "iExact:" H ":" P "does not match goal"
239
    |pm_reduce; iSolveTC ||
240
     let H := pretty_ident H in
241 242 243 244 245 246 247 248 249
     fail "iExact:" H "not absorbing and the remaining hypotheses not affine"].

Tactic Notation "iAssumptionCore" :=
  let rec find Γ i P :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?Q => first [unify P Q; unify i j|find Γ i P]
    end in
  match goal with
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
250
     first [is_evar i; fail 1 | pm_reflexivity]
251
  | |- envs_lookup ?i (Envs ?Γp ?Γs _) = Some (_, ?P) =>
252
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
253
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
254
     first [is_evar i; fail 1 | pm_reflexivity]
255
  | |- envs_lookup_delete _ ?i (Envs ?Γp ?Γs _) = Some (_, ?P, _) =>
256
     is_evar i; first [find Γp i P | find Γs i P]; pm_reflexivity
257 258 259 260 261 262 263 264
  end.

Tactic Notation "iAssumption" :=
  let Hass := fresh in
  let rec find p Γ Q :=
    lazymatch Γ with
    | Esnoc ?Γ ?j ?P => first
       [pose proof (_ : FromAssumption p P Q) as Hass;
Robbert Krebbers's avatar
Robbert Krebbers committed
265
        eapply (tac_assumption _ j p P);
266
          [pm_reflexivity
267
          |apply Hass
268
          |pm_reduce; iSolveTC ||
269 270 271
           fail 1 "iAssumption:" j "not absorbing and the remaining hypotheses not affine"]
       |assert (P = False%I) as Hass by reflexivity;
        apply (tac_false_destruct _ j p P);
272
          [pm_reflexivity
273 274 275 276 277 278 279 280 281 282 283 284
          |exact Hass]
       |find p Γ Q]
    end in
  lazymatch goal with
  | |- envs_entails (Envs ?Γp ?Γs _) ?Q =>
     first [find true Γp Q | find false Γs Q
           |fail "iAssumption:" Q "not found"]
  end.

(** * False *)
Tactic Notation "iExFalso" := apply tac_ex_falso.

285 286
(** * Making hypotheses intuitionistic or pure *)
Local Tactic Notation "iIntuitionistic" constr(H) :=
287
  eapply tac_intuitionistic with H _ _ _; (* (i:=H) *)
288 289
    [pm_reflexivity ||
     let H := pretty_ident H in
290
     fail "iIntuitionistic:" H "not found"
291
    |iSolveTC ||
292
     let P := match goal with |- IntoPersistent _ ?P _ => P end in
293
     fail "iIntuitionistic:" P "not persistent"
294
    |pm_reduce; iSolveTC ||
295
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
296
     fail "iIntuitionistic:" P "not affine and the goal not absorbing"
297
    |pm_reduce].
298

299
Tactic Notation "iPure" constr(H) "as" simple_intropattern(pat) :=
300
  eapply tac_pure with H _ _ _; (* (i:=H1) *)
301 302 303
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iPure:" H "not found"
304
    |iSolveTC ||
305 306
     let P := match goal with |- IntoPure ?P _ => P end in
     fail "iPure:" P "not pure"
307
    |pm_reduce; iSolveTC ||
308 309
     let P := match goal with |- TCOr (Affine ?P) _ => P end in
     fail "iPure:" P "not affine and the goal not absorbing"
310
    |pm_reduce; intros pat].
311 312 313 314

Tactic Notation "iEmpIntro" :=
  iStartProof;
  eapply tac_emp_intro;
315
    [pm_reduce; iSolveTC ||
316 317 318 319 320
     fail "iEmpIntro: spatial context contains non-affine hypotheses"].

Tactic Notation "iPureIntro" :=
  iStartProof;
  eapply tac_pure_intro;
321
    [iSolveTC ||
322 323
     let P := match goal with |- FromPure _ ?P _ => P end in
     fail "iPureIntro:" P "not pure"
324 325
    |pm_reduce; iSolveTC ||
     fail "iPureIntro: spatial context contains non-affine hypotheses"
326 327 328 329
    |].

(** Framing *)
Local Ltac iFrameFinish :=
330
  pm_prettify;
331 332 333 334 335 336 337 338 339
  try match goal with
  | |- envs_entails _ True => by iPureIntro
  | |- envs_entails _ emp => iEmpIntro
  end.

Local Ltac iFramePure t :=
  iStartProof;
  let φ := type of t in
  eapply (tac_frame_pure _ _ _ _ t);
340
    [iSolveTC || fail "iFrame: cannot frame" φ
341 342 343 344
    |iFrameFinish].

Local Ltac iFrameHyp H :=
  iStartProof;
345
  eapply tac_frame with H _ _ _;
346 347 348
    [pm_reflexivity ||
     let H := pretty_ident H in
     fail "iFrame:" H "not found"
349
    |iSolveTC ||
350 351
     let R := match goal with |- Frame _ ?R _ _ => R end in
     fail "iFrame: cannot frame" R
352
    |pm_reduce; iFrameFinish].
353 354 355 356

Local Ltac iFrameAnyPure :=
  repeat match goal with H : _ |- _ => iFramePure H end.

357
Local Ltac iFrameAnyIntuitionistic :=
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => repeat iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_intuitionistic Δ)) in go Hs
  end.

Local Ltac iFrameAnySpatial :=
  iStartProof;
  let rec go Hs :=
    match Hs with [] => idtac | ?H :: ?Hs => try iFrameHyp H; go Hs end in
  match goal with
  | |- envs_entails ?Δ _ =>
     let Hs := eval cbv in (env_dom (env_spatial Δ)) in go Hs
  end.

Tactic Notation "iFrame" := iFrameAnySpatial.

Tactic Notation "iFrame" "(" constr(t1) ")" :=
  iFramePure t1.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" :=
  iFramePure t1; iFrame ( t2 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" :=
  iFramePure t1; iFrame ( t2 t3 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ).
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ).

398 399 400 401
Local Ltac iFrame_go Hs :=
  lazymatch Hs with
  | [] => idtac
  | SelPure :: ?Hs => iFrameAnyPure; iFrame_go Hs
402
  | SelIntuitionistic :: ?Hs => iFrameAnyIntuitionistic; iFrame_go Hs
403 404 405 406
  | SelSpatial :: ?Hs => iFrameAnySpatial; iFrame_go Hs
  | SelIdent ?H :: ?Hs => iFrameHyp H; iFrame_go Hs
  end.

407
Tactic Notation "iFrame" constr(Hs) :=
408
  let Hs := sel_pat.parse Hs in iFrame_go Hs.
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
Tactic Notation "iFrame" "(" constr(t1) ")" constr(Hs) :=
  iFramePure t1; iFrame Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4) ")"
    constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) ")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 ) Hs.
Tactic Notation "iFrame" "(" constr(t1) constr(t2) constr(t3) constr(t4)
    constr(t5) constr(t6) constr(t7) constr(t8)")" constr(Hs) :=
  iFramePure t1; iFrame ( t2 t3 t4 t5 t6 t7 t8 ) Hs.

(** * Basic introduction tactics *)
Local Tactic Notation "iIntro" "(" simple_intropattern(x) ")" :=
  (* In the case the goal starts with an [let x := _ in _], we do not
     want to unfold x and start the proof mode. Instead, we want to
     use intros. So [iStartProof] has to be called only if [intros]
     fails *)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
  (* We use [_ || _] instead of [first [..|..]] so that the error in the second
  branch propagates upwards. *)
  (
    (* introduction at the meta level *)
    intros x
  ) || (
    (* introduction in the logic *)
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ _ =>
      eapply tac_forall_intro;
        [iSolveTC ||
         let P := match goal with |- FromForall ?P _ => P end in
         fail "iIntro: cannot turn" P "into a universal quantifier"
        |pm_prettify; intros x
         (* subgoal *)]
    end).
454 455 456 457

Local Tactic Notation "iIntro" constr(H) :=
  iStartProof;
  first
458
  [(* (?Q → _) *)
459
    eapply tac_impl_intro with H _ _ _; (* (i:=H) *)
460
      [iSolveTC
461
      |pm_reduce; iSolveTC ||
462 463 464
       let P := lazymatch goal with |- Persistent ?P => P end in
       fail 1 "iIntro: introducing non-persistent" H ":" P
              "into non-empty spatial context"
465
      |iSolveTC
466 467 468 469 470 471 472 473
      |pm_reduce;
       let H := pretty_ident H in
        lazymatch goal with
        | |- False =>
          let H := pretty_ident H in
          fail 1 "iIntro:" H "not fresh"
        | _ => idtac (* subgoal *)
        end]
474
  |(* (_ -∗ _) *)
475
    eapply tac_wand_intro with H _ _; (* (i:=H) *)
476
      [iSolveTC
477 478 479 480 481 482 483
      | pm_reduce;
        lazymatch goal with
        | |- False =>
          let H := pretty_ident H in
          fail 1 "iIntro:" H "not fresh"
        | _ => idtac (* subgoal *)
        end]
484
  | fail 1 "iIntro: nothing to introduce" ].
485 486 487 488

Local Tactic Notation "iIntro" "#" constr(H) :=
  iStartProof;
  first
489
  [(* (?P → _) *)
490
   eapply tac_impl_intro_intuitionistic with H _ _ _; (* (i:=H) *)
491 492 493 494
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
      fail 1 "iIntro:" P "not persistent"
495 496 497 498 499 500 501
     |pm_reduce;
      lazymatch goal with
      | |- False =>
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
      | _ => idtac (* subgoal *)
      end]
502
  |(* (?P -∗ _) *)
503
   eapply tac_wand_intro_intuitionistic with H _ _ _; (* (i:=H) *)
504 505 506
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- IntoPersistent _ ?P _ => P end in
507
      fail 1 "iIntro:" P "not intuitionistic"
508 509 510
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
511 512 513 514 515 516 517
     |pm_reduce;
      lazymatch goal with
      | |- False =>
        let H := pretty_ident H in
        fail 1 "iIntro:" H "not fresh"
      | _ => idtac (* subgoal *)
      end]
518
  |fail 1 "iIntro: nothing to introduce"].
519

520 521 522 523 524 525
Local Tactic Notation "iIntro" constr(H) "as" constr(p) :=
  lazymatch p with
  | true => iIntro #H
  | _ =>  iIntro H
  end.

526
Local Tactic Notation "iIntro" "_" :=
527
  iStartProof;
528
  first
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
  [(* (?Q → _) *)
   eapply tac_impl_intro_drop;
     [iSolveTC
     |(* subgoal *)]
  |(* (_ -∗ _) *)
   eapply tac_wand_intro_drop;
     [iSolveTC
     |iSolveTC ||
      let P := match goal with |- TCOr (Affine ?P) _ => P end in
      fail 1 "iIntro:" P "not affine and the goal not absorbing"
     |(* subgoal *)]
  |(* (∀ _, _) *)
   iIntro (_)
   (* subgoal *)
  |fail 1 "iIntro: nothing to introduce"].
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566

Local Tactic Notation "iIntroForall" :=
  lazymatch goal with
  | |-  _, ?P => fail (* actually an →, this is handled by iIntro below *)
  | |-  _, _ => intro
  | |- let _ := _ in _ => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ ( x : _, _) => let x' := fresh x in iIntro (x')
    end
  end.
Local Tactic Notation "iIntro" :=
  lazymatch goal with
  | |- _  ?P => intro
  | |- _ =>
    iStartProof;
    lazymatch goal with
    | |- envs_entails _ (_ - _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    | |- envs_entails _ (_  _) => iIntro (?) || let H := iFresh in iIntro #H || iIntro H
    end
  end.

567 568 569 570 571 572 573 574 575
(** * Revert *)
Local Tactic Notation "iForallRevert" ident(x) :=
  let err x :=
    intros x;
    iMatchHyp (fun H P =>
      lazymatch P with
      | context [x] => fail 2 "iRevert:" x "is used in hypothesis" H
      end) in
  iStartProof;
Robbert Krebbers's avatar
Robbert Krebbers committed
576
  first [let _ := type of x in idtac|fail 1 "iRevert:" x "not in scope"];
577 578 579 580 581 582
  let A := type of x in
  lazymatch type of A with
  | Prop => revert x; first [apply tac_pure_revert|err x]
  | _ => revert x; first [apply tac_forall_revert|err x]
  end.

583 584 585
(** The tactic [iRevertHyp H with tac] reverts the hypothesis [H] and calls
[tac] with a Boolean that is [true] iff [H] was in the intuitionistic context. *)
Tactic Notation "iRevertHyp" constr(H) "with" tactic1(tac) :=
586 587 588 589 590 591 592 593 594 595
  eapply tac_revert with H;
    [lazymatch goal with
     | |- match envs_lookup_delete true ?i ?Δ with _ => _ end =>
        lazymatch eval pm_eval in (envs_lookup_delete true i Δ) with
        | Some (?p,_,_) => pm_reduce; tac p
        | None =>
           let H := pretty_ident H in
           fail "iRevert:" H "not found"
        end
     end].
596 597

Tactic Notation "iRevertHyp" constr(H) := iRevertHyp H with (fun _ => idtac).
598

599 600 601 602 603 604 605
Tactic Notation "iRevert" constr(Hs) :=
  let rec go Hs :=
    lazymatch Hs with
    | [] => idtac
    | ESelPure :: ?Hs =>
       repeat match goal with x : _ |- _ => revert x end;
       go Hs
606
    | ESelIdent _ ?H :: ?Hs => iRevertHyp H; go Hs
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
    end in
  iStartProof; let Hs := iElaborateSelPat Hs in go Hs.

Tactic Notation "iRevert" "(" ident(x1) ")" :=
  iForallRevert x1.
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" :=
  iForallRevert x2; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" :=
  iForallRevert x3; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")" :=
  iForallRevert x4; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" :=
  iForallRevert x5; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" :=
  iForallRevert x6; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" :=
  iForallRevert x7; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" :=
  iForallRevert x8; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
630 631 632 633 634 635 636 637 638 639 640 641 642 643
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ")" :=
  iForallRevert x9; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10) ")" :=
  iForallRevert x10; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ")" :=
  iForallRevert x11; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ")" :=
  iForallRevert x12; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ).
644 645 646 647 648 649 650 651
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ident(x13) ")" :=
  iForallRevert x13; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ident(x13) ident(x14) ")" :=
  iForallRevert x14; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ).
652 653 654 655
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ident(x13) ident(x14) ident(x15) ")" :=
  iForallRevert x15; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ).
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

Tactic Notation "iRevert" "(" ident(x1) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4) ")"
    constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 ).
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 ).
693 694 695 696 697 698 699 700
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ident(x13) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 ).
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ident(x13) ident(x14) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ).
701 702 703 704
Tactic Notation "iRevert" "(" ident(x1) ident(x2) ident(x3) ident(x4)
    ident(x5) ident(x6) ident(x7) ident(x8) ident(x9) ident(x10)
    ident(x11) ident(x12) ident(x13) ident(x14) ident(x15) ")" constr(Hs) :=
  iRevert Hs; iRevert ( x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 ).
705

706
(** * The specialize and pose proof tactics *)
707 708 709 710 711 712 713 714 715 716
Record iTrm {X As S} :=
  ITrm { itrm : X ; itrm_vars : hlist As ; itrm_hyps : S }.
Arguments ITrm {_ _ _} _ _ _.

Notation "( H $! x1 .. xn )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) "") (at level 0, x1, xn at level 9).
Notation "( H $! x1 .. xn 'with' pat )" :=
  (ITrm H (hcons x1 .. (hcons xn hnil) ..) pat) (at level 0, x1, xn at level 9).
Notation "( H 'with' pat )" := (ITrm H hnil pat) (at level 0).

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
(* The tactic [iIntoEmpValid] tactic solves a goal [bi_emp_valid Q]. The
argument [t] must be a Coq term whose type is of the following shape:

[∀ (x_1 : A_1) .. (x_n : A_n), φ]

and so that we have an instance `AsValid φ Q`.

Examples of such [φ]s are

- [bi_emp_valid P], in which case [Q] should be [P]
- [P1 ⊢ P2], in which case [Q] should be [P1 -∗ P2]
- [P1 ⊣⊢ P2], in which case [Q] should be [P1 ↔ P2]

The tactic instantiates each dependent argument [x_i] with an evar and generates
a goal [R] for each non-dependent argument [x_i : R].  For example, if the
original goal was [Q] and [t] has type [∀ x, P x → Q], then it generates an evar
[?x] for [x] and a subgoal [P ?x]. *)
Local Ltac iIntoEmpValid t :=
  let go_specialize t tT :=
    lazymatch tT with                (* We do not use hnf of tT, because, if
                                        entailment is not opaque, then it would
                                        unfold it. *)
    | ?P  ?Q => let H := fresh in assert P as H; [|iIntoEmpValid uconstr:(t H); clear H]
    |  _ : ?T, _ =>
      (* Put [T] inside an [id] to avoid TC inference from being invoked. *)
      (* This is a workarround for Coq bug #6583. *)
      let e := fresh in evar (e:id T);
      let e' := eval unfold e in e in clear e; iIntoEmpValid (t e')
    end
  in
    (* We try two reduction tactics for the type of t before trying to
       specialize it. We first try the head normal form in order to
       unfold all the definition that could hide an entailment.  Then,
       we try the much weaker [eval cbv zeta], because entailment is
       not necessarilly opaque, and could be unfolded by [hnf].

       However, for calling type class search, we only use [cbv zeta]
       in order to make sure we do not unfold [bi_emp_valid]. *)
    let tT := type of t in
    first
      [ let tT' := eval hnf in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in go_specialize t tT'
      | let tT' := eval cbv zeta in tT in
        notypeclasses refine (as_emp_valid_1 tT _ _);
          [iSolveTC || fail 1 "iPoseProof: not a BI assertion"
          |exact t]].

Tactic Notation "iPoseProofCoreHyp" constr(H) "as" constr(Hnew) :=
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
  let Δ := iGetCtx in
  eapply tac_pose_proof_hyp with H Hnew;
    pm_reduce;
    lazymatch goal with
    | |- False =>
      let lookup := pm_eval (envs_lookup_delete false H Δ) in
      lazymatch lookup with
      | None =>
        let H := pretty_ident H in
        fail "iPoseProof:" H "not found"
      | _ =>
        let Hnew := pretty_ident Hnew in
        fail "iPoseProof:" Hnew "not fresh"
      end
    | _ => idtac
    end.
781

782 783
Tactic Notation "iPoseProofCoreLem" constr(lem) "as" tactic3(tac) :=
  let Hnew := iFresh in
784
  eapply tac_pose_proof with Hnew _; (* (j:=H) *)
785
    [iIntoEmpValid lem
786 787 788 789 790
    |pm_reduce;
     lazymatch goal with
     | |- False =>
       let Hnew := pretty_ident Hnew in
       fail "iPoseProof:" Hnew "not fresh"
791
     | _ => tac Hnew
792
     end];
793 794 795
  (* Solve all remaining TC premises generated by [iIntoEmpValid] *)
  try iSolveTC.

796
(** There is some hacky stuff going on here: because of Coq bug #6583, unresolved
797 798 799 800 801
type classes in e.g. the arguments [xs] of [iSpecializeArgs_go] are resolved at
arbitrary moments. That is because tactics like [apply], [split] and [eexists]
wrongly trigger type class search. To avoid TC being triggered too eagerly, the
tactics below use [notypeclasses refine] instead of [apply], [split] and
[eexists]. *)
802
Local Ltac iSpecializeArgs_go H xs :=
803 804 805
  lazymatch xs with
  | hnil => idtac
  | hcons ?x ?xs =>
806
     notypeclasses refine (tac_forall_specialize _ H _ _ _ _ _ _ _);
807 808 809 810 811 812 813 814
       [pm_reflexivity ||
        let H := pretty_ident H in
        fail "iSpecialize:" H "not found"
       |iSolveTC ||
        let P := match goal with |- IntoForall ?P _ => P end in
        fail "iSpecialize: cannot instantiate" P "with" x
       |lazymatch goal with (* Force [A] in [ex_intro] to deal with coercions. *)
        | |-  _ : ?A, _ =>
815 816
          notypeclasses refine (@ex_intro A _ x _)
        end; [shelve..|pm_reduce; iSpecializeArgs_go H xs]]
817
  end.
818 819
Local Tactic Notation "iSpecializeArgs" constr(H) open_constr(xs) :=
  iSpecializeArgs_go H xs.
820

821
Ltac iSpecializePat_go H1 pats :=
822 823 824 825 826 827 828 829 830 831 832 833
  let solve_to_wand H1 :=
    iSolveTC ||
    let P := match goal with |- IntoWand _ _ ?P _ _ => P end in
    fail "iSpecialize:" P "not an implication/wand" in
  let solve_done d :=
    lazymatch d with
    | true =>
       done ||
       let Q := match goal with |- envs_entails _ ?Q => Q end in
       fail "iSpecialize: cannot solve" Q "using done"
    | false => idtac
    end in
834
  let Δ := iGetCtx in
835
  lazymatch pats with
836 837 838
    | [] => idtac
    | SForall :: ?pats =>
       idtac "[IPM] The * specialization pattern is deprecated because it is applied implicitly.";
839
       iSpecializePat_go H1 pats
840 841 842
    | SIdent ?H2 [] :: ?pats =>
       (* If we not need to specialize [H2] we can avoid a lot of unncessary
       context manipulation. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
843
       notypeclasses refine (tac_specialize false _ H2 _ H1 _ _ _ _ _ _ _ _ _);
844 845 846 847 848 849
         [pm_reflexivity ||
          let H2 := pretty_ident H2 in
          fail "iSpecialize:" H2 "not found"
         |pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
850 851 852 853
         |iSolveTC ||
          let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
          let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
          fail "iSpecialize: cannot instantiate" P "with" Q
854
         |pm_reduce; iSpecializePat_go H1 pats]
855 856 857 858 859 860 861 862 863 864
    | SIdent ?H2 ?pats1 :: ?pats =>
       (* If [H2] is in the intuitionistic context, we copy it into a new
       hypothesis [Htmp], so that it can be used multiple times. *)
       let H2tmp := iFresh in
       iPoseProofCoreHyp H2 as H2tmp;
       (* Revert [H1] and re-introduce it later so that it will not be consumsed
       by [pats1]. *)
       iRevertHyp H1 with (fun p =>
         iSpecializePat_go H2tmp pats1;
           [.. (* side-conditions of [iSpecialize] *)
865
           |iIntro H1 as p]);
866 867 868 869
         (* We put the stuff below outside of the closure to get less verbose
         Ltac backtraces (which would otherwise include the whole closure). *)
         [.. (* side-conditions of [iSpecialize] *)
         |(* Use [remove_intuitionistic = true] to remove the copy [Htmp]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
870
          notypeclasses refine (tac_specialize true _ H2tmp _ H1 _ _ _ _ _ _ _ _ _);
871 872 873 874 875 876 877 878 879 880
            [pm_reflexivity ||
             let H2tmp := pretty_ident H2tmp in
             fail "iSpecialize:" H2tmp "not found"
            |pm_reflexivity ||
             let H1 := pretty_ident H1 in
             fail "iSpecialize:" H1 "not found"
            |iSolveTC ||
             let P := match goal with |- IntoWand _ _ ?P ?Q _ => P end in
             let Q := match goal with |- IntoWand _ _ ?P ?Q _ => Q end in
             fail "iSpecialize: cannot instantiate" P "with" Q
881
            |pm_reduce; iSpecializePat_go H1 pats]]
882
    | SPureGoal ?d :: ?pats =>
883
       notypeclasses refine (tac_specialize_assert_pure _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
884 885 886
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
887 888 889 890 891
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- FromPure _ ?Q _ => Q end in
          fail "iSpecialize:" Q "not pure"
         |solve_done d (*goal*)
892 893
         |pm_reduce;
          iSpecializePat_go H1 pats]
894
    | SGoal (SpecGoal GIntuitionistic false ?Hs_frame [] ?d) :: ?pats =>
895
       notypeclasses refine (tac_specialize_assert_intuitionistic _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
896 897 898
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
899 900 901 902 903
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
         |iSolveTC
904
         |pm_reduce; iFrame Hs_frame; solve_done d (*goal*)
905
         |pm_reduce; iSpecializePat_go H1 pats]
906 907
    | SGoal (SpecGoal GIntuitionistic _ _ _ _) :: ?pats =>
       fail "iSpecialize: cannot select hypotheses for intuitionistic premise"
908 909
    | SGoal (SpecGoal ?m ?lr ?Hs_frame ?Hs ?d) :: ?pats =>
       let Hs' := eval cbv in (if lr then Hs else Hs_frame ++ Hs) in
910
       notypeclasses refine (tac_specialize_assert _ H1 _ lr Hs' _ _ _ _ _ _ _ _ _);
911 912 913
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
914 915
         |solve_to_wand H1
         |lazymatch m with
916
          | GSpatial => class_apply add_modal_id
917 918
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
919 920 921
         |pm_reduce;
          lazymatch goal with
          | |- False =>
922
            let Hs' := iMissingHypsCore Δ Hs' in
923 924
            fail "iSpecialize: hypotheses" Hs' "not found"
          | _ =>
925
            notypeclasses refine (conj _ _);
926 927 928
              [iFrame Hs_frame; solve_done d (*goal*)
              |iSpecializePat_go H1 pats]
          end]
929
    | SAutoFrame GIntuitionistic :: ?pats =>
930
       notypeclasses refine (tac_specialize_assert_intuitionistic _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
931 932 933
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
934 935 936 937
         |solve_to_wand H1
         |iSolveTC ||
          let Q := match goal with |- Persistent ?Q => Q end in
          fail "iSpecialize:" Q "not persistent"
938
         |pm_reduce; solve [iFrame "∗ #"]
939
         |pm_reduce; iSpecializePat_go H1 pats]
940
    | SAutoFrame ?m :: ?pats =>
941
       notypeclasses refine (tac_specialize_frame _ H1 _ _ _ _ _ _ _ _ _ _ _ _);
942 943 944
         [pm_reflexivity ||
          let H1 := pretty_ident H1 in
          fail "iSpecialize:" H1 "not found"
945 946
         |solve_to_wand H1
         |lazymatch m with
Robbert Krebbers's avatar
Robbert Krebbers committed
947
          | GSpatial => class_apply add_modal_id
948 949
          | GModal => iSolveTC || fail "iSpecialize: goal not a modality"
          end
950 951
         |pm_reduce;
          first
952 953 954 955
            [notypeclasses refine (tac_unlock_emp _ _ _)
            |notypeclasses refine (tac_unlock_True _ _ _)
            |iFrame "∗ #"; notypeclasses refine (tac_unlock _ _ _)
            |fail "iSpecialize: premise cannot be solved by framing"]
956 957 958 959 960
         |exact eq_refl]; iIntro H1; iSpecializePat_go H1 pats
    end.

Local Tactic Notation "iSpecializePat" open_constr(H) constr(pat) :=
  let pats := spec_pat.parse pat in iSpecializePat_go H pats.
961 962

(* The argument [p] denotes whether the conclusion of the specialized term is
963
intuitionistic. If so, one can use all spatial hypotheses for both proving the
964 965 966 967 968 969 970 971 972
premises and the remaning goal. The argument [p] can either be a Boolean or an
introduction pattern, which will be coerced into [true] when it solely contains
`#` or `%` patterns at the top-level.

In case the specialization pattern in [t] states that the modality of the goal
should be kept for one of the premises (i.e. [>[H1 .. Hn]] is used) then [p]
defaults to [false] (i.e. spatial hypotheses are not preserved). *)
Tactic Notation "iSpecializeCore" open_constr(H)
    "with" open_constr(xs) open_constr(pat) "as" constr(p) :=
973
  let p := intro_pat_intuitionistic p in
974 975 976 977 978 979 980
  let pat := spec_pat.parse pat in
  let H :=
    lazymatch type of H with
    | string => constr:(INamed H)
    | _ => H
    end in
  iSpecializeArgs H xs; [..|
Robbert Krebbers's avatar
Robbert Krebbers committed
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    lazymatch type of H with
    | ident =>
       (* The lemma [tac_specialize_intuitionistic_helper] allows one to use the
       whole spatial context for:
       - proving the premises of the lemma we specialize, and,
       - the remaining goal.

       We can only use if all of the following properties hold:
       - The result of the specialization is persistent.
       - No modality is eliminated.
       - If the BI is not affine, the hypothesis should be in the intuitionistic
         context.

       As an optimization, we do only use [tac_specialize_intuitionistic_helper]
       if no implications nor wands are eliminated, i.e. [pat ≠ []]. *)
       let pat := spec_pat.parse pat in
       lazymatch eval compute in
         (p && bool_decide (pat  []) && negb (existsb spec_pat_modal pat)) with
       | true =>
          (* Check that if the BI is not affine, the hypothesis is in the
          intuitionistic context. *)
          lazymatch iTypeOf H with
          | Some (?q, _) =>
             let PROP := iBiOfGoal in
             lazymatch eval compute in (q || tc_to_bool (BiAffine PROP)) with
             | true =>
1007
                notypeclasses refine (tac_specialize_intuitionistic_helper _ H _ _ _ _ _ _ _ _ _ _);
Robbert Krebbers's avatar
Robbert Krebbers committed
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
                  [pm_reflexivity
                   (* This premise, [envs_lookup j Δ = Some (q,P)],
                   holds because [iTypeOf] succeeded *)
                  |pm_reduce; iSolveTC
                   (* This premise, [if q then TCTrue else BiAffine PROP],
                   holds because [q || TC_to_bool (BiAffine PROP)] is true *)
                  |iSpecializePat H pat;
                    [..
                    |notypeclasses refine (tac_specialize_intuitionistic_helper_done _ H _ _ _);
                     pm_reflexivity]
                  |iSolveTC ||
                   let Q := match goal with |- IntoPersistent _ ?Q _ => Q end in
                   fail "iSpecialize:" Q "not persistent"
1021
                  |pm_reduce (* goal *)]
Robbert Krebbers's avatar
Robbert Krebbers committed
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
             | false => iSpecializePat H pat
             end
          | None =>
             let H := pretty_ident H in
             fail "iSpecialize:" H "not found"
          end
       | false => iSpecializePat H pat
       end
    | _ => fail "iSpecialize:" H "should be a hypothesis, use iPoseProof instead"
    end].
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

Tactic Notation "iSpecializeCore" open_constr(t) "as" constr(p) :=
  lazymatch type of t with
  | string => iSpecializeCore t with hnil "" as p
  | ident => iSpecializeCore t with hnil "" as p
  | _ =>
    lazymatch t with
    | ITrm ?H ?xs ?pat => iSpecializeCore H with xs pat as p
    | _ => fail "iSpecialize:" t "should be a proof mode term"
    end
  end.

Tactic Notation "iSpecialize" open_constr(t) :=
  iSpecializeCore t as false.
Tactic Notation "iSpecialize" open_constr(t) "as" "#" :=
  iSpecializeCore t as true.

Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
1049
(** The tactic [iPoseProofCore lem as p tac] inserts the resource
1050 1051 1052 1053
described by [lem] into the context. The tactic takes a continuation [tac] as
its argument, which is called with a temporary fresh name [H] that refers to
the hypothesis containing [lem].

Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
1054 1055
The argument [p] is like that of [iSpecialize]. It is a Boolean that denotes
whether the conclusion of the specialized term [lem] is persistent. *)
1056
Tactic Notation "iPoseProofCore" open_constr(lem)
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
1057
    "as" constr(p) tactic3(tac) :=
1058 1059 1060
  iStartProof;
  let t := lazymatch lem with ITrm ?t ?xs ?pat => t | _ => lem end in
  let t := lazymatch type of t with string => constr:(INamed t) | _ => t end in
1061
  let spec_tac Htmp :=
1062
    lazymatch lem with
Robbert Krebbers's avatar
Robbert Krebbers committed
1063
    | ITrm _ ?xs ?pat => iSpecializeCore (ITrm Htmp xs pat) as p
1064 1065
    | _ => idtac
    end in
Robbert Krebbers's avatar
Robbert Krebbers committed
1066
  lazymatch type of t with
1067 1068 1069 1070
  | ident =>
     let Htmp := iFresh in
     iPoseProofCoreHyp t as Htmp; spec_tac Htmp; [..|tac Htmp]
  | _ => iPoseProofCoreLem t as (fun Htmp => spec_tac Htmp; [..|tac Htmp])
1071 1072
  end.

1073
(** * The apply tactic *)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
(** [iApply lem] takes an argument [lem : P₁ -∗ .. -∗ Pₙ -∗ Q] (after the
specialization patterns in [lem] have been executed), where [Q] should match
the goal, and generates new goals [P1] ... [Pₙ]. Depending on the number of
premises [n], the tactic will have the following behavior:

- If [n = 0], it will immediately solve the goal (i.e. it will not generate any
  subgoals). When working in a general BI, this means that the tactic can fail
  in case there are non-affine spatial hypotheses in the context prior to using
  the [iApply] tactic. Note that if [n = 0], the tactic behaves exactly like
  [iExact lem].
- If [n > 0] it will generate a goals [P₁] ... [Pₙ]. All spatial hypotheses
  will be transferred to the last goal, i.e. [Pₙ]; the other goals will receive
  no spatial hypotheses. If you want to control more precisely how the spatial
  hypotheses are subdivided, you should add additional introduction patterns to
  [lem]. *)

(* The helper [iApplyHypExact] takes care of the [n=0] case. It fails with level
0 if we should proceed to the [n > 0] case, and with level 1 if there is an
actual error. *)
Local Ltac iApplyHypExact H :=
  first
Robbert Krebbers's avatar
Robbert Krebbers committed
1095
    [eapply tac_assumption with H _ _; (* (i:=H) *)
1096 1097 1098 1099 1100 1101 1102 1103 1104
       [pm_reflexivity || fail 1
       |iSolveTC || fail 1
       |pm_reduce; iSolveTC]
    |lazymatch iTypeOf H with
     | Some (_,?Q) =>
        fail 2 "iApply:" Q "not absorbing and the remaining hypotheses not affine"
     end].
Local Ltac iApplyHypLoop H :=
  first
1105
    [eapply tac_apply with H _ _ _;
1106
      [pm_reflexivity
1107
      |iSolveTC
1108 1109
      |pm_reduce;
       pm_prettify (* reduce redexes created by instantiation *)]
1110 1111 1112 1113 1114 1115 1116 1117 1118
    |iSpecializePat H "[]"; last iApplyHypLoop H].

Tactic Notation "iApplyHyp" constr(H) :=
  first
    [iApplyHypExact H
    |iApplyHypLoop H
    |lazymatch iTypeOf H with
     | Some (_,?Q) => fail 1 "iApply: cannot apply" Q
     end].
1119 1120

Tactic Notation "iApply" open_constr(lem) :=
Paolo G. Giarrusso's avatar
Paolo G. Giarrusso committed
1121
  iPoseProofCore lem as false (fun H => iApplyHyp H).
1122 1123 1124 1125 1126 1127 1128 1129

(** * Disjunction *)
Tactic Notation "iLeft" :=
  iStartProof;
  eapply tac_or_l;
    [iSolveTC ||
     let P := match goal with |- FromOr ?P _ _ => P end in
     fail "iLeft:" P "not a disjunction"
1130
    |(* subgoal *)].
1131 1132 1133 1134 1135 1136
Tactic Notation "iRight"