cmra.v 51.5 KB
Newer Older
1
From iris.algebra Require Export cofe.
2

Robbert Krebbers's avatar
Robbert Krebbers committed
3 4
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
5 6 7 8 9 10 11 12 13

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
14
Hint Extern 0 (_  _) => reflexivity.
15 16
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
17 18
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
19
Notation "✓{ n } x" := (validN n x)
20
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22 23
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
24
Notation "✓ x" := (valid x) (at level 20) : C_scope.
25

26
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
27
Notation "x ≼{ n } y" := (includedN n x y)
28
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
29
Instance: Params (@includedN) 4.
30
Hint Extern 0 (_ {_} _) => reflexivity.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  (* setoids *)
34
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
35 36
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
37
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  (* valid *)
39
  mixin_cmra_valid_validN x :  x   n, {n} x;
40
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  (* monoid *)
42 43
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45 46 47
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  mixin_cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
48
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
49 50 51
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
53

Robbert Krebbers's avatar
Robbert Krebbers committed
54
(** Bundeled version *)
55
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57 58 59
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
  cmra_compl : Compl cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
60
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
61
  cmra_op : Op cmra_car;
62
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
63
  cmra_validN : ValidN cmra_car;
64
  cmra_cofe_mixin : CofeMixin cmra_car;
65 66
  cmra_mixin : CMRAMixin cmra_car;
  cmra_car' : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
67
}.
68 69
Arguments CMRAT' _ {_ _ _ _ _ _ _} _ _ _.
Notation CMRAT A m m' := (CMRAT' A m m' A).
70 71 72 73
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Arguments cmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Arguments cmra_pcore : simpl never.
75
Arguments cmra_op : simpl never.
76
Arguments cmra_valid : simpl never.
77 78 79
Arguments cmra_validN : simpl never.
Arguments cmra_cofe_mixin : simpl never.
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
Add Printing Constructor cmraT.
81 82 83 84
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
85
Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT A (cmra_cofe_mixin A).
Robbert Krebbers's avatar
Robbert Krebbers committed
86 87
Canonical Structure cmra_cofeC.

88 89 90 91 92 93
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
94 95 96
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
97 98
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
99 100
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
101 102
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
103 104 105 106
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108 109 110 111 112 113
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
  Proof. apply (mixin_cmra_pcore_preserving _ (cmra_mixin A)). Qed.
114 115
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
116
  Lemma cmra_extend n x y1 y2 :
117 118
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }.
119
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
120 121
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
122 123 124 125 126 127 128 129
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.

130
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
131 132
Class Exclusive {A : cmraT} (x : A) := exclusive0_r :  y, {0} (x  y)  False.
Arguments exclusive0_r {_} _ {_} _ _.
133

Robbert Krebbers's avatar
Robbert Krebbers committed
134 135 136 137 138 139 140 141 142 143 144
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

145
(** * CMRAs with a unit element *)
146
(** We use the notation ∅ because for most instances (maps, sets, etc) the
147
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
148
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
149 150
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
151 152
  mixin_ucmra_unit_timeless : Timeless ;
  mixin_ucmra_pcore_unit : pcore   Some 
153
}.
154

155
Structure ucmraT := UCMRAT' {
156 157 158 159
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
  ucmra_compl : Compl ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  ucmra_pcore : PCore ucmra_car;
161 162 163 164 165 166
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
  ucmra_cofe_mixin : CofeMixin ucmra_car;
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
167 168
  ucmra_mixin : UCMRAMixin ucmra_car;
  ucmra_car' : Type;
169
}.
170 171
Arguments UCMRAT' _ {_ _ _ _ _ _ _ _} _ _ _ _.
Notation UCMRAT A m m' m'' := (UCMRAT' A m m' m'' A).
172 173 174 175
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Arguments ucmra_compl : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
Arguments ucmra_pcore : simpl never.
177 178 179 180 181 182 183
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
Arguments ucmra_cofe_mixin : simpl never.
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
184
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
Coercion ucmra_cofeC (A : ucmraT) : cofeT := CofeT A (ucmra_cofe_mixin A).
Canonical Structure ucmra_cofeC.
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
  CMRAT A (ucmra_cofe_mixin A) (ucmra_cmra_mixin A).
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_timeless : Timeless ( : A).
  Proof. apply (mixin_ucmra_unit_timeless _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
201 202
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
203
End ucmra_mixin.
204

205
(** * Discrete CMRAs *)
206
Class CMRADiscrete (A : cmraT) := {
207 208 209 210
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
211
(** * Morphisms *)
212
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
213 214 215
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
  validN_preserving n x : {n} x  {n} f x;
  included_preserving x y : x  y  f x  f y
216
}.
217 218
Arguments validN_preserving {_ _} _ {_} _ _ _.
Arguments included_preserving {_ _} _ {_} _ _ _.
219

220
(** * Local updates *)
Ralf Jung's avatar
Ralf Jung committed
221 222
(** The idea is that lemams taking this class will usually have L explicit,
    and leave Lv implicit - it will be inferred by the typeclass machinery. *)
223 224 225
Class LocalUpdate {A : cmraT} (Lv : A  Prop) (L : A  A) := {
  local_update_ne n :> Proper (dist n ==> dist n) L;
  local_updateN n x y : Lv x  {n} (x  y)  L (x  y) {n} L x  y
226 227 228
}.
Arguments local_updateN {_ _} _ {_} _ _ _ _ _.

229
(** * Frame preserving updates *)
Robbert Krebbers's avatar
Robbert Krebbers committed
230 231
Definition cmra_updateP {A : cmraT} (x : A) (P : A  Prop) :=  n mz,
  {n} (x ? mz)   y, P y  {n} (y ? mz).
232
Instance: Params (@cmra_updateP) 1.
233
Infix "~~>:" := cmra_updateP (at level 70).
Robbert Krebbers's avatar
Robbert Krebbers committed
234 235 236

Definition cmra_update {A : cmraT} (x y : A) :=  n mz,
  {n} (x ? mz)  {n} (y ? mz).
237
Infix "~~>" := cmra_update (at level 70).
238
Instance: Params (@cmra_update) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
239

Robbert Krebbers's avatar
Robbert Krebbers committed
240
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
241
Section cmra.
242
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
Implicit Types x y z : A.
244
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
245

246
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248 249 250 251 252 253 254 255
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
256
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
257 258 259
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
260
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
261 262 263 264
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
265 266 267 268 269 270 271 272
Global Instance ra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
273 274 275 276
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
295 296 297 298
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
299 300 301
Global Instance cmra_updateP_proper :
  Proper (() ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A).
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
302 303 304 305 306 307 308
  rewrite /pointwise_relation /cmra_updateP=> x x' Hx P P' HP;
    split=> ? n mz; setoid_subst; naive_solver.
Qed.
Global Instance cmra_update_proper :
  Proper (() ==> () ==> iff) (@cmra_update A).
Proof.
  rewrite /cmra_update=> x x' Hx y y' Hy; split=> ? n mz ?; setoid_subst; auto.
309
Qed.
310

Robbert Krebbers's avatar
Robbert Krebbers committed
311 312 313 314
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

315
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
316
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
317 318 319
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
321
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
322 323 324
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
325
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
326 327 328 329 330 331 332 333
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
334 335 336 337
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
338 339 340 341 342 343 344 345
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
346

347 348 349 350
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

351
(** ** Exclusive elements *)
352 353 354
Lemma exclusiveN_r x `{!Exclusive x} :
   (n : nat) (y : A), {n} (x  y)  False.
Proof. intros ???%cmra_validN_le%exclusive0_r; auto with arith. Qed.
355 356 357 358 359 360 361 362
Lemma exclusiveN_l x `{!Exclusive x} :
   (n : nat) (y : A), {n} (y  x)  False.
Proof. intros ??. rewrite comm. by apply exclusiveN_r. Qed.
Lemma exclusive_r x `{!Exclusive x} :  (y : A),  (x  y)  False.
Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_r _ 0). Qed.
Lemma exclusive_l x `{!Exclusive x} :  (y : A),  (y  x)  False.
Proof. by intros ? ?%cmra_valid_validN%(exclusiveN_l _ 0). Qed.

363
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
364 365
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
367
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
369
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Global Instance cmra_included_trans: Transitive (@included A _ _).
371
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
372
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
373
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
375
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
376
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
378

Robbert Krebbers's avatar
Robbert Krebbers committed
379
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
380
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
381
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
382 383 384 385 386 387 388
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
389
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
390
Lemma cmra_included_r x y : y  x  y.
391
Proof. rewrite (comm op); apply cmra_included_l. Qed.
392

Robbert Krebbers's avatar
Robbert Krebbers committed
393 394 395 396 397 398 399 400 401
Lemma cmra_pcore_preserving' x y cx :
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
  destruct (cmra_pcore_preserving x y cx') as (cy&->&?); auto.
  exists cy; by rewrite Hcx.
Qed.
Lemma cmra_pcore_preservingN' n x y cx :
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
403 404 405 406 407 408 409
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
  destruct (cmra_pcore_preserving x (x  z) cx')
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
410
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
411 412
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
413
Lemma cmra_preservingN_l n x y z : x {n} y  z  x {n} z  y.
414
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
415
Lemma cmra_preserving_l x y z : x  y  z  x  z  y.
416
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
417
Lemma cmra_preservingN_r n x y z : x {n} y  x  z {n} y  z.
418
Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed.
419
Lemma cmra_preserving_r x y z : x  y  x  z  y  z.
420
Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed.
421

Robbert Krebbers's avatar
Robbert Krebbers committed
422
Lemma cmra_included_dist_l n x1 x2 x1' :
423
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
Proof.
425 426
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Qed.
428

Robbert Krebbers's avatar
Robbert Krebbers committed
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
(** ** Total core *)
Section total_core.
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
  Lemma cmra_core_preserving x y : x  y  core x  core y.
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
    destruct (cmra_pcore_preserving x y cx) as (cy&Hcy&?); auto.
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
458 459
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Lemma cmra_core_preservingN n x y : x {n} y  core x {n} core y.
  Proof.
    intros [z ->].
    apply cmra_included_includedN, cmra_core_preserving, cmra_included_l.
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
497
(** ** Timeless *)
498
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
499 500
Proof.
  intros ?? [x' ?].
501
  destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *.
502
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
503
Qed.
504
Lemma cmra_timeless_included_r n x y : Timeless y  x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
505
Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed.
506
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
507
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
508 509
Proof.
  intros ??? z Hz.
510
  destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *.
511
  { rewrite -?Hz. by apply cmra_valid_validN. }
512
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
513
Qed.
514

515 516 517 518 519 520 521 522
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
523
  split; first by apply cmra_included_includedN.
524 525 526
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.

527
(** ** Local updates *)
528 529
Global Instance local_update_proper Lv (L : A  A) :
  LocalUpdate Lv L  Proper (() ==> ()) L.
530 531
Proof. intros; apply (ne_proper _). Qed.

532 533
Lemma local_update L `{!LocalUpdate Lv L} x y :
  Lv x   (x  y)  L (x  y)  L x  y.
534 535 536
Proof.
  by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L).
Qed.
537 538

Global Instance local_update_op x : LocalUpdate (λ _, True) (op x).
539
Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed.
540

Ralf Jung's avatar
Ralf Jung committed
541 542 543
Global Instance local_update_id : LocalUpdate (λ _, True) (@id A).
Proof. split; auto with typeclass_instances. Qed.

544 545
Global Instance exclusive_local_update y :
  LocalUpdate Exclusive (λ _, y) | 1000.
546
Proof. split. apply _. by intros ?????%exclusiveN_r. Qed.
547

548
(** ** Updates *)
549
Lemma cmra_update_updateP x y : x ~~> y  x ~~>: (y =).
Robbert Krebbers's avatar
Robbert Krebbers committed
550
Proof. split=> Hup n z ?; eauto. destruct (Hup n z) as (?&<-&?); auto. Qed.
551
Lemma cmra_updateP_id (P : A  Prop) x : P x  x ~~>: P.
Robbert Krebbers's avatar
Robbert Krebbers committed
552
Proof. intros ? n mz ?; eauto. Qed.
553
Lemma cmra_updateP_compose (P Q : A  Prop) x :
554
  x ~~>: P  ( y, P y  y ~~>: Q)  x ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
555
Proof. intros Hx Hy n mz ?. destruct (Hx n mz) as (y&?&?); naive_solver. Qed.
556 557 558
Lemma cmra_updateP_compose_l (Q : A  Prop) x y : x ~~> y  y ~~>: Q  x ~~>: Q.
Proof.
  rewrite cmra_update_updateP.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
  intros; apply cmra_updateP_compose with (y =); naive_solver.
560
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
561 562
Lemma cmra_updateP_weaken (P Q : A  Prop) x :
  x ~~>: P  ( y, P y  Q y)  x ~~>: Q.
563
Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
564 565 566 567 568 569 570
Global Instance cmra_update_preorder : PreOrder (@cmra_update A).
Proof.
  split.
  - intros x. by apply cmra_update_updateP, cmra_updateP_id.
  - intros x y z. rewrite !cmra_update_updateP.
    eauto using cmra_updateP_compose with subst.
Qed.
571 572 573
Lemma cmra_update_exclusive `{!Exclusive x} y:
   y  x ~~> y.
Proof. move=>??[z|]=>[/exclusiveN_r[]|_]. by apply cmra_valid_validN. Qed.
574

575
Lemma cmra_updateP_op (P1 P2 Q : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
576 577
  x1 ~~>: P1  x2 ~~>: P2  ( y1 y2, P1 y1  P2 y2  Q (y1  y2)) 
  x1  x2 ~~>: Q.
578
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
579 580 581 582 583 584
  intros Hx1 Hx2 Hy n mz ?.
  destruct (Hx1 n (Some (x2 ? mz))) as (y1&?&?).
  { by rewrite /= -cmra_opM_assoc. }
  destruct (Hx2 n (Some (y1 ? mz))) as (y2&?&?).
  { by rewrite /= -cmra_opM_assoc (comm _ x2) cmra_opM_assoc. }
  exists (y1  y2); split; last rewrite (comm _ y1) cmra_opM_assoc; auto.
585
Qed.
586
Lemma cmra_updateP_op' (P1 P2 : A  Prop) x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
587 588
  x1 ~~>: P1  x2 ~~>: P2 
  x1  x2 ~~>: λ y,  y1 y2, y = y1  y2  P1 y1  P2 y2.
589
Proof. eauto 10 using cmra_updateP_op. Qed.
590
Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1  x2 ~~> y2  x1  x2 ~~> y1  y2.
591
Proof.
592
  rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence.
593
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

Section total_updates.
  Context `{CMRATotal A}.

  Lemma cmra_total_updateP x (P : A  Prop) :
    x ~~>: P   n z, {n} (x  z)   y, P y  {n} (y  z).
  Proof.
    split=> Hup; [intros n z; apply (Hup n (Some z))|].
    intros n [z|] ?; simpl; [by apply Hup|].
    destruct (Hup n (core x)) as (y&?&?); first by rewrite cmra_core_r.
    eauto using cmra_validN_op_l.
  Qed.
  Lemma cmra_total_update x y : x ~~> y   n z, {n} (x  z)  {n} (y  z).
  Proof. rewrite cmra_update_updateP cmra_total_updateP. naive_solver. Qed.

  Context `{CMRADiscrete A}.

  Lemma cmra_discrete_updateP (x : A) (P : A  Prop) :
    x ~~>: P   z,  (x  z)   y, P y   (y  z).
  Proof.
    rewrite cmra_total_updateP; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
  Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) :
    x ~~> y   z,  (x  z)   (y  z).
  Proof.
    rewrite cmra_total_update; setoid_rewrite <-cmra_discrete_valid_iff.
    naive_solver eauto using 0.
  Qed.
End total_updates.
Robbert Krebbers's avatar
Robbert Krebbers committed
624 625
End cmra.

626 627
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_inhabited : Inhabited A := populate .

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
    intros x. destruct (cmra_pcore_preserving'  x ) as (cx&->&?);
      eauto using ucmra_unit_least, (persistent ).
  Qed.
649

Robbert Krebbers's avatar
Robbert Krebbers committed
650 651 652 653 654 655
  Lemma ucmra_update_unit x : x ~~> .
  Proof.
    apply cmra_total_update=> n z. rewrite left_id; apply cmra_validN_op_r.
  Qed.
  Lemma ucmra_update_unit_alt y :  ~~> y   x, x ~~> y.
  Proof. split; [intros; trans |]; auto using ucmra_update_unit. Qed.
656
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
Hint Immediate cmra_unit_total.

(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
    { z | x  z.1  z.2  z.1 {n} y1  z.2 {n} y2 }).
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
689

690
(** * Properties about monotone functions *)
691
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
692
Proof. repeat split; by try apply _. Qed.
693 694
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
695 696
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
697
  - apply _. 
698
  - move=> n x Hx /=. by apply validN_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
699
  - move=> x y Hxy /=. by apply included_preserving, included_preserving.
700
Qed.
701

702 703
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
704 705
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
  Lemma includedN_preserving n x y : x {n} y  f x {n} f y.
706
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
707
    intros [z ->].
708
    apply cmra_included_includedN, (included_preserving f), cmra_included_l.
709
  Qed.
710
  Lemma valid_preserving x :  x   f x.
711 712 713
  Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed.
End cmra_monotone.

714 715
(** Functors *)
Structure rFunctor := RFunctor {
716
  rFunctor_car : cofeT  cofeT  cmraT;
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A.
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
Structure urFunctor := URFunctor {
  urFunctor_car : cofeT  cofeT  ucmraT;
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

Definition urFunctor_diag (F: urFunctor) (A: cofeT) : ucmraT := urFunctor_car F A A.
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

773 774 775 776 777 778 779 780 781 782 783 784 785
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
786
  Lemma cmra_transport_core x : T (core x) = core (T x).
787
  Proof. by destruct H. Qed.
788
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
789
  Proof. by destruct H. Qed.
790
  Lemma cmra_transport_valid x :  T x   x.
791 792 793
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
794 795
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
796 797 798 799 800 801 802 803
  Lemma cmra_transport_updateP (P : A  Prop) (Q : B  Prop) x :
    x ~~>: P  ( y, P y  Q (T y))  T x ~~>: Q.
  Proof. destruct H; eauto using cmra_updateP_weaken. Qed.
  Lemma cmra_transport_updateP' (P : A  Prop) x :
    x ~~>: P  T x ~~>: λ y,  y', y = cmra_transport H y'  P y'.
  Proof. eauto using cmra_transport_updateP. Qed.
End cmra_transport.

804 805
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
806
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
807
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
808 809 810 811
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
812
  (* monoid *)
813 814
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
815 816 817 818
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
  ra_pcore_preserving x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
819
  ra_valid_op_l x y :  (x  y)   x
820 821
}.

822
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
823
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
824 825
  Context (ra_mix : RAMixin A).
  Existing Instances discrete_dist discrete_compl.
826

827
  Instance discrete_validN : ValidN A := λ n x,  x.
828
  Definition discrete_cmra_mixin : CMRAMixin A.
829
  Proof.
830
    destruct ra_mix; split; try done.
831
    - intros x; split; first done. by move=> /(_ 0).
832
    - intros n x y1 y2 ??; by exists (y1,y2).
833 834 835
  Qed.
End discrete.

836 837 838 839 840
Notation discreteR A ra_mix :=
  (CMRAT A discrete_cofe_mixin (discrete_cmra_mixin ra_mix)).
Notation discreteLeibnizR A ra_mix :=
  (CMRAT A (@discrete_cofe_mixin _ equivL _) (discrete_cmra_mixin ra_mix)).

Robbert Krebbers's avatar
Robbert Krebbers committed
841
Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A,
842 843 844
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
Section ra_total.
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_proper :  (x : A), Proper (() ==> ()) (op x)).
  Context (core_proper: Proper (() ==> ()) (@core A _)).
  Context (valid_proper : Proper (() ==> impl) (@valid A _)).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
  Context (core_preserving :  x y : A, x  y  core x  core y).
  Context (valid_op_l :  x y : A,  (x  y)   x).
  Lemma ra_total_mixin : RAMixin A.
  Proof.
    split; auto.
    - intros x y ? Hcx%core_proper Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
    - intros x y cx Hxy%core_preserving Hx. move: Hxy.
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End ra_total.

870 871 872
(** ** CMRA for the unit type *)
Section unit.
  Instance unit_valid : Valid () := λ x, True.
873
  Instance unit_validN : ValidN () := λ n x, True.
Robbert Krebbers's avatar
Robbert Krebbers committed
874
  Instance unit_pcore : PCore () := λ x, Some x.
875
  Instance unit_op : Op () := λ x y, ().
876
  Lemma unit_cmra_mixin : CMRAMixin ().
Robbert Krebbers's avatar
Robbert Krebbers committed
877
  Proof. apply discrete_cmra_mixin, ra_total_mixin; by eauto. Qed.
878
  Canonical Structure unitR : cmraT := CMRAT () unit_cofe_mixin unit_cmra_mixin.
879 880 881 882 883 884 885

  Instance unit_empty : Empty () := ().
  Lemma unit_ucmra_mixin : UCMRAMixin ().
  Proof. done. Qed.
  Canonical Structure unitUR : ucmraT :=
    UCMRAT () unit_cofe_mixin unit_cmra_mixin unit_ucmra_mixin.

886
  Global Instance unit_cmra_discrete : CMRADiscrete unitR.
887
  Proof. done. Qed.