proofmode.v 5.66 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.proofmode Require Import tactics.
2
From iris.base_logic.lib Require Import invariants.
3
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
4

5
Lemma demo_0 {M : ucmraT} (P Q : uPred M) :
6
   (P  Q) - ( x, x = 0  x = 1)  (Q  P).
7
8
9
10
11
12
13
14
Proof.
  iIntros "#H #H2".
  (* should remove the disjunction "H" *)
  iDestruct "H" as "[?|?]"; last by iLeft.
  (* should keep the disjunction "H" because it is instantiated *)
  iDestruct ("H2" $! 10) as "[%|%]". done. done.
Qed.

15
Lemma demo_1 (M : ucmraT) (P1 P2 P3 : nat  uPred M) :
16
  ( (x y : nat) a b,
Robbert Krebbers's avatar
Robbert Krebbers committed
17
    x  y 
18
19
20
     (uPred_ownM (a  b) -
    ( y1 y2 c, P1 ((x + y1) + y2)  True   uPred_ownM c) -
      ( z, P2 z  True  P2 z) -
Ralf Jung's avatar
Ralf Jung committed
21
     ( n m : nat, P1 n   ((True  P2 n)   (n = n  P3 n))) -
22
     x = 0   x z,  P3 (x + z)  uPred_ownM b  uPred_ownM (core b)))%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
23
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  iIntros (i [|j] a b ?) "!# [Ha Hb] H1 #H2 H3"; setoid_subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
25
26
  { iLeft. by iNext. }
  iRight.
27
  iDestruct "H1" as (z1 z2 c) "(H1&_&#Hc)".
28
  iPoseProof "Hc" as "foo".
29
  iRevert (a b) "Ha Hb". iIntros (b a) "Hb {foo} Ha".
30
  iAssert (uPred_ownM (a  core a)) with "[Ha]" as "[Ha #Hac]".
Robbert Krebbers's avatar
Robbert Krebbers committed
31
  { by rewrite cmra_core_r. }
32
  iIntros "{$Hac $Ha}".
Robbert Krebbers's avatar
Robbert Krebbers committed
33
34
  iExists (S j + z1), z2.
  iNext.
35
  iApply ("H3" $! _ 0 with "[$]").
36
  - iSplit. done. iApply "H2". iLeft. iApply "H2". by iRight.
Robbert Krebbers's avatar
Robbert Krebbers committed
37
38
39
  - done.
Qed.

40
Lemma demo_2 (M : ucmraT) (P1 P2 P3 P4 Q : uPred M) (P5 : nat  uPredC M):
41
42
43
  P2  (P3  Q)  True  P1  P2  (P4  ( x:nat, P5 x  P3))  True -
    P1 - (True  True) -
  (((P2  False  P2  0 = 0)  P3)  Q  P1  True) 
44
     (P2  False)  (False  P5 0).
Robbert Krebbers's avatar
Robbert Krebbers committed
45
46
47
48
49
50
51
52
53
54
55
Proof.
  (* Intro-patterns do something :) *)
  iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
  (* To test destruct: can also be part of the intro-pattern *)
  iDestruct "foo" as "[_ meh]".
  repeat iSplit; [|by iLeft|iIntros "#[]"].
  iFrame "H2".
  (* split takes a list of hypotheses just for the LHS *)
  iSplitL "H3".
  * iFrame "H3". by iRight.
  * iSplitL "HQ". iAssumption. by iSplitL "H1".
Robbert Krebbers's avatar
Robbert Krebbers committed
56
57
Qed.

58
Lemma demo_3 (M : ucmraT) (P1 P2 P3 : uPred M) :
59
  P1  P2  P3 -  P1   (P2   x, (P3  x = 0)  P3).
60
61
62
63
64
Proof. iIntros "($ & $ & H)". iFrame "H". iNext. by iExists 0. Qed.

Definition foo {M} (P : uPred M) := (P  P)%I.
Definition bar {M} : uPred M := ( P, foo P)%I.

65
Lemma demo_4 (M : ucmraT) : True - @bar M.
66
Proof. iIntros. iIntros (P) "HP //". Qed.
67

68
Lemma demo_5 (M : ucmraT) (x y : M) (P : uPred M) :
69
  ( z, P  z  y) - (P - (x,x)  (y,x)).
70
71
Proof.
  iIntros "H1 H2".
72
73
  iRewrite (uPred.internal_eq_sym x x with "[# //]").
  iRewrite -("H1" $! _ with "[- //]").
74
  done.
75
76
Qed.

77
Lemma demo_6 (M : ucmraT) (P Q : uPred M) :
78
79
  ( x y z : nat,
    x = plus 0 x  y = 0  z = 0  P   Q  foo (x  x))%I.
80
Proof.
81
  iIntros (a) "*".
82
  iIntros "#Hfoo **".
83
  iIntros "# _ //".
84
Qed.
85

86
Lemma demo_7 (M : ucmraT) (P Q1 Q2 : uPred M) : P  (Q1  Q2) - P  Q1.
87
88
Proof. iIntros "[H1 [H2 _]]". by iFrame. Qed.

89
Section iris.
90
  Context `{invG Σ}.
91
  Implicit Types E : coPset.
92
  Implicit Types P Q : iProp Σ.
93

94
  Lemma demo_8 N E P Q R :
95
    N  E 
96
    (True - P - inv N Q - True - R) - P -  Q ={E}= R.
97
  Proof.
98
    iIntros (?) "H HP HQ".
99
    iApply ("H" with "[% //] [$] [> HQ] [> //]").
100
    by iApply inv_alloc.
101
  Qed.
102
End iris.
103
104

Lemma demo_9 (M : ucmraT) (x y z : M) :
105
   x  y  z - ( x   x  y  z : uPred M).
106
Proof. iIntros (Hv) "Hxy". by iFrame (Hv Hv) "Hxy". Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
108
109
110
111
112
113
114
115
116

Lemma demo_10 (M : ucmraT) (P Q : uPred M) : P - Q - True.
Proof.
  iIntros "HP HQ".
  iAssert True%I as "#_". { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
  iAssert True%I as %_. { by iClear "HP HQ". }
  iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
  done.
Qed.
117
118

Lemma demo_11 (M : ucmraT) (P Q R : uPred M) :
119
  (P - True - True - Q - R) - P - Q - R.
120
Proof. iIntros "H HP HQ". by iApply ("H" with "[$]"). Qed.
121
122
123
124

(* Check coercions *)
Lemma demo_12 (M : ucmraT) (P : Z  uPred M) : ( x, P x) -  x, P x.
Proof. iIntros "HP". iExists (0:nat). iApply ("HP" $! (0:nat)). Qed.
125
126

Lemma demo_13 (M : ucmraT) (P : uPred M) : (|==> False) - |==> P.
127
Proof. iIntros. iAssert False%I with "[> - //]" as %[]. Qed.
128
129
130

Lemma demo_14 (M : ucmraT) (P : uPred M) : False - P.
Proof. iIntros "H". done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
132
133
134
135
136
137
138

(* Check instantiation and dependent types *)
Lemma demo_15 (M : ucmraT) (P :  n, vec nat n  uPred M) :
  ( n v, P n v) -  n v, P n v.
Proof.
  iIntros "H". iExists _, [#10].
  iSpecialize ("H" $! _ [#10]). done.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
139
140
141
142

Lemma demo_16 (M : ucmraT) (P Q R : uPred M) `{!PersistentP R} :
  P - Q - R - R  Q  P  R  False.
Proof. eauto with iFrame. Qed.
143
144
145
146

Lemma demo_17 (M : ucmraT) (P Q R : uPred M) `{!PersistentP R} :
  P - Q - R - R  Q  P  R  False.
Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
147
148
149
150
151
152
153

Lemma test_iNext_evar (M : ucmraT) (P : uPred M) :
  P - True.
Proof.
  iIntros "HP". iAssert ( _ -  P)%I as "?"; last done.
  iIntros "?". iNext. iAssumption.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
154

155
Lemma test_iNext_sep1 (M : ucmraT) (P Q : uPred M)
Robbert Krebbers's avatar
Robbert Krebbers committed
156
157
158
159
160
161
    (R1 := (P  Q)%I) (R2 := ( P   Q)%I) :
  ( P   Q)  R1  R2 -  (P  Q)   R1  R2.
Proof.
  iIntros "H". iNext.
  rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done.
Qed.
162
163
164
165
166
167

Lemma test_iNext_sep2 (M : ucmraT) (P Q : uPred M) :
   P   Q -  (P  Q).
Proof.
  iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *)
Qed.