program-logic.tex 29.7 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1

2
\section{Program Logic}
3
\label{sec:program-logic}
4

Ralf Jung's avatar
Ralf Jung committed
5
This section describes how to build a program logic for an arbitrary language (\cf \Sref{sec:language}) on top of the base logic.
Ralf Jung's avatar
Ralf Jung committed
6
So in the following, we assume that some language $\Lang$ was fixed.
Ralf Jung's avatar
Ralf Jung committed
7

Ralf Jung's avatar
Ralf Jung committed
8
\subsection{Dynamic Composeable Higher-Order Resources}
Ralf Jung's avatar
Ralf Jung committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
\label{sec:composeable-resources}

The base logic described in \Sref{sec:base-logic} works over an arbitrary CMRA $\monoid$ defining the structure of the resources.
It turns out that we can generalize this further and permit picking CMRAs ``$\iFunc(\Prop)$'' that depend on the structure of assertions themselves.
Of course, $\Prop$ is just the syntactic type of assertions; for this to make sense we have to look at the semantics.

Furthermore, there is a composeability problem with the given logic: if we have one proof performed with CMRA $\monoid_1$, and another proof carried out with a \emph{different} CMRA $\monoid_2$, then the two proofs are actually carried out in two \emph{entirely separate logics} and hence cannot be combined.

Finally, in many cases just having a single ``instance'' of a CMRA available for reasoning is not enough.
For example, when reasoning about a dynamically allocated data structure, every time a new instance of that data structure is created, we will want a fresh resource governing the state of this particular instance.
While it would be possible to handle this problem whenever it comes up, it turns out to be useful to provide a general solution.

The purpose of this section is to describe how we solve these issues.

\paragraph{Picking the resources.}
The key ingredient that we will employ on top of the base logic is to give some more fixed structure to the resources.
To instantiate the program logic, the user picks a family of locally contractive bifunctors $(\iFunc_i : \COFEs \to \CMRAs)_{i \in \mathcal{I}}$.
(This is in contrast to the base logic, where the user picks a single, fixed CMRA that has a unit.)

From this, we construct the bifunctor defining the overall resources as follows:
\begin{align*}
30
31
  \mathcal G \eqdef{}& \nat \\
  \textdom{ResF}(\cofe^\op, \cofe) \eqdef{}& \prod_{i \in \mathcal I} \mathcal G \fpfn \iFunc_i(\cofe^\op, \cofe)
Ralf Jung's avatar
Ralf Jung committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
\end{align*}
We will motivate both the use of a product and the finite partial function below.
$\textdom{ResF}(\cofe^\op, \cofe)$ is a CMRA by lifting the individual CMRAs pointwise, and it has a unit (using the empty finite partial functions).
Furthermore, since the $\iFunc_i$ are locally contractive, so is $\textdom{ResF}$.

Now we can write down the recursive domain equation:
\[ \iPreProp \cong \UPred(\textdom{ResF}(\iPreProp, \iPreProp)) \]
$\iPreProp$ is a COFE defined as the fixed-point of a locally contractive bifunctor.
This fixed-point exists and is unique\footnote{We have not proven uniqueness in Coq.} by America and Rutten's theorem~\cite{America-Rutten:JCSS89,birkedal:metric-space}.
We do not need to consider how the object is constructed. 
We only need the isomorphism, given by
\begin{align*}
  \Res &\eqdef \textdom{ResF}(\iPreProp, \iPreProp) \\
  \iProp &\eqdef \UPred(\Res) \\
	\wIso &: \iProp \nfn \iPreProp \\
	\wIso^{-1} &: \iPreProp \nfn \iProp
\end{align*}

Notice that $\iProp$ is the semantic model of assertions for the base logic described in \Sref{sec:base-logic} with $\Res$:
\[ \Sem{\Prop} \eqdef \iProp = \UPred(\Res) \]
Effectively, we just defined a way to instantiate the base logic with $\Res$ as the CMRA of resources, while providing a way for $\Res$ to depend on $\iPreProp$, which is isomorphic to $\Sem\Prop$.

We thus obtain all the rules of \Sref{sec:base-logic}, and furthermore, we can use the maps $\wIso$ and $\wIso^{-1}$ \emph{in the logic} to convert between logical assertions $\Sem\Prop$ and the domain $\iPreProp$ which is used in the construction of $\Res$ -- so from elements of $\iPreProp$, we can construct elements of $\Sem{\textlog M}$, which are the elements that can be owned in our logic.

\paragraph{Proof composeability.}
To make our proofs composeable, we \emph{generalize} our proofs over the family of functors.
This is possible because we made $\Res$ a \emph{product} of all the CMRAs picked by the user, and because we can actually work with that product ``pointwise''.
So instead of picking a \emph{concrete} family, proofs will assume to be given an \emph{arbitrary} family of functors, plus a proof that this family \emph{contains the functors they need}.
Composing two proofs is then merely a matter of conjoining the assumptions they make about the functors.
Since the logic is entirely parametric in the choice of functors, there is no trouble reasoning without full knowledge of the family of functors.

Only when the top-level proof is completed we will ``close'' the proof by picking a concrete family that contains exactly those functors the proof needs.

\paragraph{Dynamic resources.}
Finally, the use of finite partial functions lets us have as many instances of any CMRA as we could wish for:
Because there can only ever be finitely many instances already allocated, it is always possible to create a fresh instance with any desired (valid) starting state.
This is best demonstrated by giving some proof rules.

So let us first define the notion of ghost ownership that we use in this logic.
Assuming that the family of functors contains the functor $\Sigma_i$ at index $i$, and furthermore assuming that $\monoid_i = \Sigma_i(\iPreProp, \iPreProp)$, given some $\melt \in \monoid_i$ we define:
\[ \ownGhost\gname{\melt:\monoid_i} \eqdef \ownM{(\ldots, \emptyset, i:\mapsingleton \gname \melt, \emptyset, \ldots)} \]
This is ownership of the pair (element of the product over all the functors) that has the empty finite partial function in all components \emph{except for} the component corresponding to index $i$, where we own the element $\melt$ at index $\gname$ in the finite partial function.

We can show the following properties for this form of ownership:
\begin{mathparpagebreakable}
  \inferH{res-alloc}{\text{$G$ infinite} \and \melt \in \mval_{M_i}}
  {  \TRUE \proves \upd \Exists\gname\in G. \ownGhost\gname{\melt : M_i}
  }
  \and
  \inferH{res-update}
    {\melt \mupd_{M_i} B}
    {\ownGhost\gname{\melt : M_i} \proves \upd \Exists \meltB\in B. \ownGhost\gname{\meltB : M_i}}

  \inferH{res-empty}
  {\text{$\munit$ is a unit of $M_i$}}
  {\TRUE \proves \upd \ownGhost\gname\munit}
  
  \axiomH{res-op}
    {\ownGhost\gname{\melt : M_i} * \ownGhost\gname{\meltB : M_i} \provesIff \ownGhost\gname{\melt\mtimes\meltB : M_i}}

  \axiomH{res-valid}
    {\ownGhost\gname{\melt : M_i} \Ra \mval_{M_i}(\melt)}

  \inferH{res-timeless}
    {\text{$\melt$ is a discrete COFE element}}
    {\timeless{\ownGhost\gname{\melt : M_i}}}
\end{mathparpagebreakable}

Below, we will always work within (an instance of) the logic as described here.
Whenever a CMRA is used in a proof, we implicitly assume it to be available in the global family of functors.
We will typically leave the $M_i$ implicit when asserting ghost ownership, as the type of $\melt$ will be clear from the context.



Ralf Jung's avatar
Ralf Jung committed
106
\subsection{World Satisfaction, Invariants, Fancy Updates}
Ralf Jung's avatar
Ralf Jung committed
107
\label{sec:invariants}
Ralf Jung's avatar
Ralf Jung committed
108
109
110
111
112
113
114

To introduce invariants into our logic, we will define weakest precondition to explicitly thread through the proof that all the invariants are maintained throughout program execution.
However, in order to be able to access invariants, we will also have to provide a way to \emph{temporarily disable} (or ``open'') them.
To this end, we use tokens that manage which invariants are currently enabled.

We assume to have the following four CMRAs available:
\begin{align*}
115
116
117
118
119
  \mathcal I \eqdef{}& \nat \\
  \textmon{Inv} \eqdef{}& \authm(\mathcal I \fpfn \agm(\latert \iPreProp)) \\
  \textmon{En} \eqdef{}& \pset{\mathcal I} \\
  \textmon{Dis} \eqdef{}& \finpset{\mathcal I} \\
  \textmon{State} \eqdef{}& \authm(\maybe{\exm(\State)})
Ralf Jung's avatar
Ralf Jung committed
120
121
122
123
124
125
126
\end{align*}
The last two are the tokens used for managing invariants, $\textmon{Inv}$ is the monoid used to manage the invariants themselves.
Finally, $\textmon{State}$ is used to provide the program with a view of the physical state of the machine.

Furthermore, we assume that instances named $\gname_{\textmon{State}}$, $\gname_{\textmon{Inv}}$, $\gname_{\textmon{En}}$ and $\gname_{\textmon{Dis}}$ of these CMRAs have been created.
(We will discuss later how this assumption is discharged.)

Ralf Jung's avatar
Ralf Jung committed
127
\paragraph{World Satisfaction.}
Ralf Jung's avatar
Ralf Jung committed
128
129
We can now define the assertion $W$ (\emph{world satisfaction}) which ensures that the enabled invariants are actually maintained:
\begin{align*}
130
131
  W \eqdef{}& \Exists I : \mathcal I \fpfn \Prop.
  \begin{array}[t]{@{} l}
132
    \ownGhost{\gname_{\textmon{Inv}}}{\authfull
Ralf Jung's avatar
Ralf Jung committed
133
      \mapComp {\iname}
134
135
136
137
        {\aginj(\latertinj(\wIso(I(\iname))))}
        {\iname \in \dom(I)}} * \\
    \Sep_{\iname \in \dom(I)} \left( \later I(\iname) * \ownGhost{\gname_{\textmon{Dis}}}{\set{\iname}} \lor \ownGhost{\gname_{\textmon{En}}}{\set{\iname}} \right)
  \end{array}
Ralf Jung's avatar
Ralf Jung committed
138
139
140
141
\end{align*}

\paragraph{Invariants.}
The following assertion states that an invariant with name $\iname$ exists and maintains assertion $\prop$:
142
143
\[ \knowInv\iname\prop \eqdef \ownGhost{\gname_{\textmon{Inv}}}
  {\authfrag \mapsingleton \iname {\aginj(\latertinj(\wIso(\prop)))}} \]
Ralf Jung's avatar
Ralf Jung committed
144

Ralf Jung's avatar
Ralf Jung committed
145
146
\paragraph{Fancy Updates and View Shifts.}
Next, we define \emph{fancy updates}, which are essentially the same as the basic updates of the base logic ($\Sref{sec:base-logic}$), except that they also have access to world satisfaction and can enable and disable invariants:
147
\[ \pvs[\mask_1][\mask_2] \prop \eqdef W * \ownGhost{\gname_{\textmon{En}}}{\mask_1} \wand \upd\diamond (W * \ownGhost{\gname_{\textmon{En}}}{\mask_2} * \prop) \]
Ralf Jung's avatar
Ralf Jung committed
148
Here, $\mask_1$ and $\mask_2$ are the \emph{masks} of the view update, defining which invariants have to be (at least!) available before and after the update.
Robbert Krebbers's avatar
Robbert Krebbers committed
149
We use $\top$ as symbol for the largest possible mask, $\nat$, and $\bot$ for the smallest possible mask $\emptyset$.
150
151
We will write $\pvs[\mask] \prop$ for $\pvs[\mask][\mask]\prop$.
%
Ralf Jung's avatar
Ralf Jung committed
152
Fancy updates satisfy the following basic proof rules:
153
\begin{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
154
\infer[fup-mono]
155
156
157
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

Ralf Jung's avatar
Ralf Jung committed
158
\infer[fup-intro-mask]
159
{\mask_2 \subseteq \mask_1}
160
{\prop \proves \pvs[\mask_1][\mask_2]\pvs[\mask_2][\mask_1] \prop}
161

Ralf Jung's avatar
Ralf Jung committed
162
\infer[fup-trans]
163
164
165
{}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

Ralf Jung's avatar
Ralf Jung committed
166
\infer[fup-upd]
167
168
{}{\upd\prop \proves \pvs[\mask] \prop}

Ralf Jung's avatar
Ralf Jung committed
169
\infer[fup-frame]
170
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1 \uplus \mask_\f][\mask_2 \uplus \mask_\f] \propB * \prop}
171

Ralf Jung's avatar
Ralf Jung committed
172
\inferH{fup-update}
173
174
175
{\melt \mupd \meltsB}
{\ownM\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownM\meltB}

Ralf Jung's avatar
Ralf Jung committed
176
\infer[fup-timeless]
177
178
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}
179
%
Ralf Jung's avatar
Ralf Jung committed
180
% \inferH{fup-allocI}
181
182
183
% {\text{$\mask$ is infinite}}
% {\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}
%gov
Ralf Jung's avatar
Ralf Jung committed
184
% \inferH{fup-openI}
185
186
% {}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}
%
Ralf Jung's avatar
Ralf Jung committed
187
% \inferH{fup-closeI}
188
% {}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}
189
\end{mathparpagebreakable}
190
(There are no rules related to invariants here. Those rules will be discussed later, in \Sref{sec:invariants}.)
Ralf Jung's avatar
Ralf Jung committed
191

Ralf Jung's avatar
Ralf Jung committed
192
We can further define the notions of \emph{view shifts} and \emph{linear view shifts}:
Ralf Jung's avatar
Ralf Jung committed
193
\begin{align*}
194
195
  \prop \vsW[\mask_1][\mask_2] \propB \eqdef{}& \prop \wand \pvs[\mask_1][\mask_2] \propB \\
  \prop \vs[\mask_1][\mask_2] \propB \eqdef{}& \always(\prop \wand \pvs[\mask_1][\mask_2] \propB)
Ralf Jung's avatar
Ralf Jung committed
196
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
197
These two are useful when writing down specifications and for comparing with previous versions of Iris, but for reasoning, it is typically easier to just work directly with fancy updates.
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
Still, just to give an idea of what view shifts ``are'', here are some proof rules for them:
\begin{mathparpagebreakable}
\inferH{vs-update}
  {\melt \mupd \meltsB}
  {\ownGhost\gname{\melt} \vs \exists \meltB \in \meltsB.\; \ownGhost\gname{\meltB}}
\and
\inferH{vs-trans}
  {\prop \vs[\mask_1][\mask_2] \propB \and \propB \vs[\mask_2][\mask_3] \propC}
  {\prop \vs[\mask_1][\mask_3] \propC}
\and
\inferH{vs-imp}
  {\always{(\prop \Ra \propB)}}
  {\prop \vs[\emptyset] \propB}
\and
\inferH{vs-mask-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop \vs[\mask_1 \uplus \mask'][\mask_2 \uplus \mask'] \propB}
\and
\inferH{vs-frame}
  {\prop \vs[\mask_1][\mask_2] \propB}
  {\prop * \propC \vs[\mask_1][\mask_2] \propB * \propC}
\and
\inferH{vs-timeless}
  {\timeless{\prop}}
  {\later \prop \vs \prop}

224
225
226
227
228
229
230
231
232
233
% \inferH{vs-allocI}
%   {\infinite(\mask)}
%   {\later{\prop} \vs[\mask] \exists \iname\in\mask.\; \knowInv{\iname}{\prop}}
% \and
% \axiomH{vs-openI}
%   {\knowInv{\iname}{\prop} \proves \TRUE \vs[\{ \iname \} ][\emptyset] \later \prop}
% \and
% \axiomH{vs-closeI}
%   {\knowInv{\iname}{\prop} \proves \later \prop \vs[\emptyset][\{ \iname \} ] \TRUE }
%
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
\inferHB{vs-disj}
  {\prop \vs[\mask_1][\mask_2] \propC \and \propB \vs[\mask_1][\mask_2] \propC}
  {\prop \lor \propB \vs[\mask_1][\mask_2] \propC}
\and
\inferHB{vs-exist}
  {\All \var. (\prop \vs[\mask_1][\mask_2] \propB)}
  {(\Exists \var. \prop) \vs[\mask_1][\mask_2] \propB}
\and
\inferHB{vs-always}
  {\always\propB \proves \prop \vs[\mask_1][\mask_2] \propC}
  {\prop \land \always{\propB} \vs[\mask_1][\mask_2] \propC}
 \and
\inferH{vs-false}
  {}
  {\FALSE \vs[\mask_1][\mask_2] \prop }
\end{mathparpagebreakable}

\subsection{Weakest Precondition}
Ralf Jung's avatar
Ralf Jung committed
252
253

Finally, we can define the core piece of the program logic, the assertion that reasons about program behavior: Weakest precondition, from which Hoare triples will be derived.
254
255

\paragraph{Defining weakest precondition.}
Ralf Jung's avatar
Ralf Jung committed
256
257
258
We assume that everything making up the definition of the language, \ie values, expressions, states, the conversion functions, reduction relation and all their properties, are suitably reflected into the logic (\ie they are part of the signature $\Sig$).

\begin{align*}
259
260
261
  \textdom{wp} \eqdef{}& \MU \textdom{wp}. \Lam \mask, \expr, \pred. \\
        & (\Exists\val. \toval(\expr) = \val \land \pvs[\mask] \prop) \lor {}\\
        & \Bigl(\toval(\expr) = \bot \land \All \state. \ownGhost{\gname_{\textmon{State}}}{\authfull \state} \vsW[\mask][\emptyset] {}\\
262
263
        &\qquad \red(\expr, \state) * \later\All \expr', \state', \vec\expr. (\expr, \state \step \expr', \state', \vec\expr) \vsW[\emptyset][\mask] {}\\
        &\qquad\qquad \ownGhost{\gname_{\textmon{State}}}{\authfull \state'} * \textdom{wp}(\mask, \expr', \pred) * \Sep_{\expr'' \in \vec\expr} \textdom{wp}(\top, \expr'', \Lam \any. \TRUE)\Bigr) \\
Ralf Jung's avatar
Ralf Jung committed
264
%  (* value case *)
265
  \wpre\expr[\mask]{\Ret\val. \prop} \eqdef{}& \textdom{wp}(\mask, \expr, \Lam\val.\prop)
Ralf Jung's avatar
Ralf Jung committed
266
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
267
If we leave away the mask, we assume it to default to $\top$.
Ralf Jung's avatar
Ralf Jung committed
268

Ralf Jung's avatar
Ralf Jung committed
269
270
271
272
This ties the authoritative part of \textmon{State} to the actual physical state of the reduction witnessed by the weakest precondition.
The fragment will then be available to the user of the logic, as their way of talking about the physical state:
\[ \ownPhys\state \eqdef \ownGhost{\gname_{\textmon{State}}}{\authfrag \state} \]

273
\paragraph{Laws of weakest precondition.}
Ralf Jung's avatar
Ralf Jung committed
274
The following rules can all be derived:
275
276
277
278
279
\begin{mathpar}
\infer[wp-value]
{}{\prop[\val/\var] \proves \wpre{\val}[\mask]{\Ret\var.\prop}}

\infer[wp-mono]
280
281
{\mask_1 \subseteq \mask_2 \and \vctx,\var:\textlog{val}\mid\prop \proves \propB}
{\vctx\mid\wpre\expr[\mask_1]{\Ret\var.\prop} \proves \wpre\expr[\mask_2]{\Ret\var.\propB}}
282

Ralf Jung's avatar
Ralf Jung committed
283
\infer[fup-wp]
284
285
{}{\pvs[\mask] \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}

Ralf Jung's avatar
Ralf Jung committed
286
\infer[wp-fup]
287
288
289
{}{\wpre\expr[\mask]{\Ret\var.\pvs[\mask] \prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}

\infer[wp-atomic]
290
{\physatomic{\expr}}
291
292
293
294
295
296
297
298
{\pvs[\mask_1][\mask_2] \wpre\expr[\mask_2]{\Ret\var. \pvs[\mask_2][\mask_1]\prop}
 \proves \wpre\expr[\mask_1]{\Ret\var.\prop}}

\infer[wp-frame]
{}{\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}

\infer[wp-frame-step]
{\toval(\expr) = \bot \and \mask_2 \subseteq \mask_1}
299
{\wpre\expr[\mask_2]{\Ret\var.\prop} * \pvs[\mask_1][\mask_2]\later\pvs[\mask_2][\mask_1]\propB \proves \wpre\expr[\mask_1]{\Ret\var.\propB*\prop}}
300
301
302
303
304
305

\infer[wp-bind]
{\text{$\lctx$ is a context}}
{\wpre\expr[\mask]{\Ret\var. \wpre{\lctx(\ofval(\var))}[\mask]{\Ret\varB.\prop}} \proves \wpre{\lctx(\expr)}[\mask]{\Ret\varB.\prop}}
\end{mathpar}

306
307
We will also want rules that connect weakest preconditions to the operational semantics of the language.
In order to cover the most general case, those rules end up being more complicated:
308
309
\begin{mathpar}
  \infer[wp-lift-step]
310
  {}
311
  { {\begin{inbox} % for some crazy reason, LaTeX is actually sensitive to the space between the "{ {" here and the "} }" below...
312
        ~~\pvs[\mask][\emptyset] \Exists \state_1. \red(\expr_1,\state_1) * \later\ownPhys{\state_1} * {}\\\qquad~~ \later\All \expr_2, \state_2, \vec\expr. \Bigl( (\expr_1, \state_1 \step \expr_2, \state_2, \vec\expr) * \ownPhys{\state_2} \Bigr) \wand \pvs[\emptyset][\mask] \Bigl(\wpre{\expr_2}[\mask]{\Ret\var.\prop} * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE}\Bigr)  {}\\\proves \wpre{\expr_1}[\mask]{\Ret\var.\prop}
313
314
315
      \end{inbox}} }
\\\\
  \infer[wp-lift-pure-step]
316
  {\All \state_1. \red(\expr_1, \state_1) \and
317
318
   \All \state_1, \expr_2, \state_2, \vec\expr. \expr_1,\state_1 \step \expr_2,\state_2,\vec\expr \Ra \state_1 = \state_2 }
  {\later\All \state, \expr_2, \vec\expr. (\expr_1,\state \step \expr_2, \state,\vec\expr)  \Ra \wpre{\expr_2}[\mask]{\Ret\var.\prop} * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \proves \wpre{\expr_1}[\mask]{\Ret\var.\prop}}
319
320
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
321
322
323
324
325
326
We can further derive some slightly simpler rules for special cases:
We can derive some specialized forms of the lifting axioms for the operational semantics.
\begin{mathparpagebreakable}
  \infer[wp-lift-atomic-step]
  {\atomic(\expr_1) \and
   \red(\expr_1, \state_1)}
327
  { {\begin{inbox}~~\later\ownPhys{\state_1} * \later\All \val_2, \state_2, \vec\expr. (\expr_1,\state_1 \step \ofval(\val),\state_2,\vec\expr)  * \ownPhys{\state_2} \wand \prop[\val_2/\var] * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} {}\\ \proves  \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}
Ralf Jung's avatar
Ralf Jung committed
328
329
330
331
332
  \end{inbox}} }

  \infer[wp-lift-atomic-det-step]
  {\atomic(\expr_1) \and
   \red(\expr_1, \state_1) \and
333
334
   \All \expr'_2, \state'_2, \vec\expr'. \expr_1,\state_1 \step \expr'_2,\state'_2,\vec\expr' \Ra \state_2 = \state_2' \land \toval(\expr_2') = \val_2 \land \vec\expr = \vec\expr'}
  {\later\ownPhys{\state_1} * \later \Bigl(\ownPhys{\state_2} \wand \prop[\val_2/\var] * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \Bigr) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
335
336

  \infer[wp-lift-pure-det-step]
337
  {\All \state_1. \red(\expr_1, \state_1) \\
338
339
   \All \state_1, \expr_2', \state'_2, \vec\expr'. \expr_1,\state_1 \step \expr'_2,\state'_2,\vec\expr' \Ra \state_1 = \state'_2 \land \expr_2 = \expr_2' \land \vec\expr = \vec\expr'}
  {\later \Bigl( \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \Sep_{\expr_\f \in \vec\expr} \wpre{\expr_\f}[\top]{\Ret\any.\TRUE} \Bigr) \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
340
\end{mathparpagebreakable}
341
342


Ralf Jung's avatar
Ralf Jung committed
343
\paragraph{Adequacy of weakest precondition.}
344

345
346
347
348
The purpose of the adequacy statement is to show that our notion of weakest preconditions is \emph{realistic} in the sense that it actually has anything to do with the actual behavior of the program.
There are two properties we are looking for: First of all, the postcondition should reflect actual properties of the values the program can terminate with.
Second, a proof of a weakest precondition with any postcondition should imply that the program is \emph{safe}, \ie that it does not get stuck.

349
To express the adequacy statement for functional correctness, we assume we are given some set $V \subseteq \Val$ of legal return values.
350
351
Furthermore, we assume that the signature $\Sig$ adds a predicate $\pred$ to the logic which reflects $V$ into the logic:
\[\begin{array}{rMcMl}
352
  \Sem\pred &:& \Sem{\Val\,} \nfn \Sem\Prop \\
353
354
355
356
357
  \Sem\pred &\eqdef& \Lam \val. \Lam \any. \setComp{n}{v \in V}
\end{array}\]
The signature can of course state arbitrary additional properties of $\pred$, as long as they are proven sound.

The adequacy statement now reads as follows:
358
\begin{align*}
359
360
 &\All \mask, \expr, \val, \pred, \state, \state', \tpool'.
 \\&( \ownPhys\state \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
361
362
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
363
     \\&\val \in V
364
365
\end{align*}

366
The adequacy statement for safety says that our weakest preconditions imply that every expression in the thread pool either is a value, or can reduce further.
367
\begin{align*}
368
 &\All \mask, \expr, \state, \state', \tpool'.
369
 \\&(\All n. \melt \in \mval_n) \Ra
370
 \\&( \ownPhys\state \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
371
372
373
374
375
376
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{\tpool'} \Ra
     \\&\All\expr'\in\tpool'. \toval(\expr') \neq \bot \lor \red(\expr', \state')
\end{align*}
Notice that this is stronger than saying that the thread pool can reduce; we actually assert that \emph{every} non-finished thread can take a step.

Ralf Jung's avatar
Ralf Jung committed
377
378
379
380
\paragraph{Hoare triples.}
It turns out that weakest precondition is actually quite convenient to work with, in particular when perfoming these proofs in Coq.
Still, for a more traditional presentation, we can easily derive the notion of a Hoare triple:
\[
381
\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask] \eqdef \always{(\prop \wand \wpre{\expr}[\mask]{\Ret\val.\propB})}
Ralf Jung's avatar
Ralf Jung committed
382
\]
Ralf Jung's avatar
Ralf Jung committed
383

Ralf Jung's avatar
Ralf Jung committed
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
We only give some of the proof rules for Hoare triples here, since we usually do all our reasoning directly with weakest preconditions and use Hoare triples only to write specifications.
\begin{mathparpagebreakable}
\inferH{Ht-ret}
  {}
  {\hoare{\TRUE}{\valB}{\Ret\val. \val = \valB}[\mask]}
\and
\inferH{Ht-bind}
  {\text{$\lctx$ is a context} \and \hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \\
   \All \val. \hoare{\propB}{\lctx(\val)}{\Ret\valB.\propC}[\mask]}
  {\hoare{\prop}{\lctx(\expr)}{\Ret\valB.\propC}[\mask]}
\and
\inferH{Ht-csq}
  {\prop \vs \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All \val. \propB' \vs \propB}
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
% \inferH{Ht-mask-weaken}
%   {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
%   {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask \uplus \mask']}
% \\\\
\inferH{Ht-frame}
  {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask]}
  {\hoare{\prop * \propC}{\expr}{\Ret\val. \propB * \propC}[\mask]}
\and
% \inferH{Ht-frame-step}
%   {\hoare{\prop}{\expr}{\Ret\val. \propB}[\mask] \and \toval(\expr) = \bot \and \mask_2 \subseteq \mask_2 \\\\ \propC_1 \vs[\mask_1][\mask_2] \later\propC_2 \and \propC_2 \vs[\mask_2][\mask_1] \propC_3}
%   {\hoare{\prop * \propC_1}{\expr}{\Ret\val. \propB * \propC_3}[\mask \uplus \mask_1]}
% \and
\inferH{Ht-atomic}
  {\prop \vs[\mask \uplus \mask'][\mask] \prop' \\
    \hoare{\prop'}{\expr}{\Ret\val.\propB'}[\mask] \\   
   \All\val. \propB' \vs[\mask][\mask \uplus \mask'] \propB \\
   \physatomic{\expr}
  }
  {\hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \mask']}
\and
\inferH{Ht-false}
  {}
  {\hoare{\FALSE}{\expr}{\Ret \val. \prop}[\mask]}
\and
\inferHB{Ht-disj}
  {\hoare{\prop}{\expr}{\Ret\val.\propC}[\mask] \and \hoare{\propB}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \lor \propB}{\expr}{\Ret\val.\propC}[\mask]}
\and
\inferHB{Ht-exist}
  {\All \var. \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask]}
  {\hoare{\Exists \var. \prop}{\expr}{\Ret\val.\propB}[\mask]}
\and
\inferHB{Ht-box}
  {\always\propB \proves \hoare{\prop}{\expr}{\Ret\val.\propC}[\mask]}
  {\hoare{\prop \land \always{\propB}}{\expr}{\Ret\val.\propC}[\mask]}
% \and
% \inferH{Ht-inv}
%   {\hoare{\later\propC*\prop}{\expr}{\Ret\val.\later\propC*\propB}[\mask] \and
%    \physatomic{\expr}
%   }
%   {\knowInv\iname\propC \proves \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \set\iname]}
% \and
% \inferH{Ht-inv-timeless}
%   {\hoare{\propC*\prop}{\expr}{\Ret\val.\propC*\propB}[\mask] \and
%    \physatomic{\expr} \and \timeless\propC
%   }
%   {\knowInv\iname\propC \proves \hoare{\prop}{\expr}{\Ret\val.\propB}[\mask \uplus \set\iname]}
\end{mathparpagebreakable}
Ralf Jung's avatar
Ralf Jung committed
449

Ralf Jung's avatar
Ralf Jung committed
450
451
452
453
454
455
456
457
458
459
\subsection{Invariant Namespaces}
\label{sec:namespaces}

In \Sref{sec:invariants}, we defined an assertion $\knowInv\iname\prop$ expressing knowledge (\ie the assertion is persistent) that $\prop$ is maintained as invariant with name $\iname$.
The concrete name $\iname$ is picked when the invariant is allocated, so it cannot possibly be statically known -- it will always be a variable that's threaded through everything.
However, we hardly care about the actual, concrete name.
All we need to know is that this name is \emph{different} from the names of other invariants that we want to open at the same time.
Keeping track of the $n^2$ mutual inequalities that arise with $n$ invariants quickly gets in the way of the actual proof.

To solve this issue, instead of remembering the exact name picked for an invariant, we will keep track of the \emph{namespace} the invariant was allocated in.
460
Namespaces are sets of invariants, following a tree-like structure:
Ralf Jung's avatar
Ralf Jung committed
461
462
463
464
465
466
467
468
Think of the name of an invariant as a sequence of identifiers, much like a fully qualified Java class name.
A \emph{namespace} $\namesp$ then is like a Java package: it is a sequence of identifiers that we think of as \emph{containing} all invariant names that begin with this sequence. For example, \texttt{org.mpi-sws.iris} is a namespace containing the invariant name \texttt{org.mpi-sws.iris.heap}.

The crux is that all namespaces contain infinitely many invariants, and hence we can \emph{freely pick} the namespace an invariant is allocated in -- no further, unpredictable choice has to be made.
Furthermore, we will often know that namespaces are \emph{disjoint} just by looking at them.
The namespaces $\namesp.\texttt{iris}$ and $\namesp.\texttt{gps}$ are disjoint no matter the choice of $\namesp$.
As a result, there is often no need to track disjointness of namespaces, we just have to pick the namespaces that we allocate our invariants in accordingly.

Robbert Krebbers's avatar
Robbert Krebbers committed
469
Formally speaking, let $\namesp \in \textlog{InvNamesp} \eqdef \List(\nat)$ be the type of \emph{invariant namespaces}.
Ralf Jung's avatar
Ralf Jung committed
470
471
472
473
We use the notation $\namesp.\iname$ for the namespace $[\iname] \dplus \namesp$.
(In other words, the list is ``backwards''. This is because cons-ing to the list, like the dot does above, is easier to deal with in Coq than appending at the end.)

The elements of a namespaces are \emph{structured invariant names} (think: Java fully qualified class name).
Robbert Krebbers's avatar
Robbert Krebbers committed
474
They, too, are lists of $\nat$, the same type as namespaces.
475
476
In order to connect this up to the definitions of \Sref{sec:invariants}, we need a way to map structued invariant names to $\mathcal I$, the type of ``plain'' invariant names.
Any injective mapping $\textlog{namesp\_inj}$ will do; and such a mapping has to exist because $\List(\nat)$ is countable and $\mathcal I$ is infinite.
Ralf Jung's avatar
Ralf Jung committed
477
478
479
480
Whenever needed, we (usually implicitly) coerce $\namesp$ to its encoded suffix-closure, \ie to the set of encoded structured invariant names contained in the namespace: \[\namecl\namesp \eqdef \setComp{\iname}{\Exists \namesp'. \iname = \textlog{namesp\_inj}(\namesp' \dplus \namesp)}\]

We will overload the notation for invariant assertions for using namespaces instead of names:
\[ \knowInv\namesp\prop \eqdef \Exists \iname \in \namecl\namesp. \knowInv\iname{\prop} \]
Ralf Jung's avatar
Ralf Jung committed
481
We can now derive the following rules (this involves unfolding the definition of fancy updates):
Ralf Jung's avatar
Ralf Jung committed
482
483
\begin{mathpar}
  \axiomH{inv-persist}{\knowInv\namesp\prop \proves \always\knowInv\namesp\prop}
Ralf Jung's avatar
Ralf Jung committed
484

485
  \axiomH{inv-alloc}{\later\prop \proves \pvs[\emptyset] \knowInv\namesp\prop}
Ralf Jung's avatar
Ralf Jung committed
486

Ralf Jung's avatar
Ralf Jung committed
487
488
489
  \inferH{inv-open}
  {\namesp \subseteq \mask}
  {\knowInv\namesp\prop \vs[\mask][\mask\setminus\namesp] \later\prop * (\later\prop \vsW[\mask\setminus\namesp][\mask] \TRUE)}
Ralf Jung's avatar
Ralf Jung committed
490

Ralf Jung's avatar
Ralf Jung committed
491
492
493
494
  \inferH{inv-open-timeless}
  {\namesp \subseteq \mask \and \timeless\prop}
  {\knowInv\namesp\prop \vs[\mask][\mask\setminus\namesp] \prop * (\prop \vsW[\mask\setminus\namesp][\mask] \TRUE)}
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
495

Ralf Jung's avatar
Ralf Jung committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
\subsection{Accessors}

The two rules \ruleref{inv-open} and \ruleref{inv-open-timeless} above may look a little surprising, in the sense that it is not clear on first sight how they would be applied.
The rules are the first \emph{accessors} that show up in this document.
Accessors are assertions of the form
\[ \prop \vs[\mask_1][\mask_2] \Exists\var. \propB * (\All\varB. \propB' \vsW[\mask_2][\mask_1] \propC) \]

One way to think about such assertions is as follows:
Given some accessor, if during our verification we have the assertion $\prop$ and the mask $\mask_1$ available, we can use the accessor to \emph{access} $\propB$ and obtain the witness $\var$.
We call this \emph{opening} the accessor, and it changes the mask to $\mask_2$.
Additionally, opening the accessor provides us with $\All\varB. \propB' \vsW[\mask_2][\mask_1] \propC$, a \emph{linear view shift} (\ie a view shift that can only be used once).
This linear view shift tells us that in order to \emph{close} the accessor again and go back to mask $\mask_1$, we have to pick some $\varB$ and establish the corresponding $\propB'$.
After closing, we will obtain $\propC$.

Ralf Jung's avatar
Ralf Jung committed
510
Using \ruleref{vs-trans} and \ruleref{Ht-atomic} (or the corresponding proof rules for fancy updates and weakest preconditions), we can show that it is possible to open an accessor around any view shift and any \emph{atomic} expression.
Ralf Jung's avatar
Ralf Jung committed
511
512
513
514
515
Furthermore, in the special case that $\mask_1 = \mask_2$, the accessor can be opened around \emph{any} expression.
For this reason, we also call such accessors \emph{non-atomic}.

The reasons accessors are useful is that they let us talk about ``opening X'' (\eg ``opening invariants'') without having to care what X is opened around.
Furthermore, as we construct more sophisticated and more interesting things that can be opened (\eg invariants that can be ``cancelled'', or STSs), accessors become a useful interface that allows us to mix and match different abstractions in arbitrary ways.
516
517
518
519
520

%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: