logic.tex 24 KB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
1
\section{Language}
2

Ralf Jung's avatar
Ralf Jung committed
3
A \emph{language} $\Lang$ consists of a set \textdom{Expr} of \emph{expressions} (metavariable $\expr$), a set \textdom{Val} of \emph{values} (metavariable $\val$), and a set \textdom{State} of \emph{states} (metvariable $\state$) such that
4
\begin{itemize}
Ralf Jung's avatar
Ralf Jung committed
5 6 7
\item There exist functions $\ofval : \textdom{Val} \to \textdom{Expr}$ and $\toval : \textdom{Expr} \pfn \textdom{val}$ (notice the latter is partial), such that
\begin{mathpar} {\All \expr, \val. \toval(\expr) = \val \Ra \ofval(\val) = \expr} \and {\All\val. \toval(\ofval(\val)) = \val} 
\end{mathpar}
Ralf Jung's avatar
Ralf Jung committed
8 9
\item There exists a \emph{primitive reduction relation} \[(-,- \step -,-,-) \subseteq \textdom{Expr} \times \textdom{State} \times \textdom{Expr} \times \textdom{State} \times (\textdom{Expr} \uplus \set{\bot})\]
  We will write $\expr_1, \state_1 \step \expr_2, \state_2$ for $\expr_1, \state_1 \step \expr_2, \state_2, \bot$. \\
Ralf Jung's avatar
Ralf Jung committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
  A reduction $\expr_1, \state_1 \step \expr_2, \state_2, \expr'$ indicates that, when $\expr_1$ reduces to $\expr$, a \emph{new thread} $\expr'$ is forked off.
\item All values are stuck:
\[ \expr, \_ \step  \_, \_, \_ \Ra \toval(\expr) = \bot \]
\item There is a predicate defining \emph{atomic} expressions satisfying
\let\oldcr\cr
\begin{mathpar}
  {\All\expr. \atomic(\expr) \Ra \toval(\expr) = \bot} \and
  {{
    \begin{inbox}
\All\expr_1, \state_1, \expr_2, \state_2, \expr'. \atomic(\expr_1) \land \expr_1, \state_1 \step \expr_2, \state_2, \expr' \Ra {}\\\qquad\qquad\qquad\quad~~ \Exists \val_2. \toval(\expr_2) = \val_2
    \end{inbox}
}}
\end{mathpar}
In other words, atomic expression \emph{reduce in one step to a value}.
It does not matter whether they fork off an arbitrary expression.
25 26
\end{itemize}

Ralf Jung's avatar
Ralf Jung committed
27 28 29 30 31
\begin{defn}
  An expression $\expr$ and state $\state$ are \emph{reducible} (written $\red(\expr, \state)$) if
  \[ \Exists \expr_2, \state_2, \expr'. \expr,\state \step \expr_2,\state_2,\expr' \]
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
32
\begin{defn}[Context]
Ralf Jung's avatar
Ralf Jung committed
33
  A function $\lctx : \textdom{Expr} \to \textdom{Expr}$ is a \emph{context} if the following conditions are satisfied:
34
  \begin{enumerate}[itemsep=0pt]
Ralf Jung's avatar
Ralf Jung committed
35 36 37 38 39 40 41
  \item $\lctx$ does not turn non-values into values:\\
    $\All\expr. \toval(\expr) = \bot \Ra \toval(\lctx(\expr)) = \bot $
  \item One can perform reductions below $\lctx$:\\
    $\All \expr_1, \state_1, \expr_2, \state_2, \expr'. \expr_1, \state_1 \step \expr_2,\state_2,\expr' \Ra \lctx(\expr_1), \state_1 \step \lctx(\expr_2),\state_2,\expr' $
  \item Reductions stay below $\lctx$ until there is a value in the hole:\\
    $\All \expr_1', \state_1, \expr_2, \state_2, \expr'. \toval(\expr_1') = \bot \land \lctx(\expr_1'), \state_1 \step \expr_2,\state_2,\expr' \Ra \Exists\expr_2'. \expr_2 = \lctx(\expr_2') \land \expr_1', \state_1 \step \expr_2',\state_2,\expr' $
  \end{enumerate}
Ralf Jung's avatar
Ralf Jung committed
42 43
\end{defn}

Ralf Jung's avatar
Ralf Jung committed
44
\subsection{Concurrent language}
Ralf Jung's avatar
Ralf Jung committed
45 46

For any language $\Lang$, we define the corresponding thread-pool semantics.
47 48 49

\paragraph{Machine syntax}
\[
Ralf Jung's avatar
Ralf Jung committed
50
	\tpool \in \textdom{ThreadPool} \eqdef \bigcup_n \textdom{Exp}^n
51 52
\]

Ralf Jung's avatar
Ralf Jung committed
53 54
\judgment{Machine reduction} {\cfg{\tpool}{\state} \step
  \cfg{\tpool'}{\state'}}
55 56
\begin{mathpar}
\infer
Ralf Jung's avatar
Ralf Jung committed
57 58 59 60 61 62 63
  {\expr_1, \state_1 \step \expr_2, \state_2, \expr' \and \expr' \neq ()}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool' \dplus [\expr']}{\state'}}
\and\infer
  {\expr_1, \state_1 \step \expr_2, \state_2}
  {\cfg{\tpool \dplus [\expr_1] \dplus \tpool'}{\state} \step
     \cfg{\tpool \dplus [\expr_2] \dplus \tpool'}{\state'}}
64 65
\end{mathpar}

66
\clearpage
Ralf Jung's avatar
Ralf Jung committed
67
\section{Logic}
Ralf Jung's avatar
Ralf Jung committed
68 69 70 71

To instantiate Iris, you need to define the following parameters:
\begin{itemize}
\item A language $\Lang$
Ralf Jung's avatar
Ralf Jung committed
72
\item A locally contractive bifunctor $\iFunc : \COFEs \to \CMRAs$ defining the ghost state, such that for all COFEs $A$, the CMRA $\iFunc(A)$ has a unit
Ralf Jung's avatar
Ralf Jung committed
73
\end{itemize}
74

Ralf Jung's avatar
Ralf Jung committed
75 76 77
\noindent
As usual for higher-order logics, you can furthermore pick a \emph{signature} $\Sig = (\SigType, \SigFn, \SigAx)$ to add more types, symbols and axioms to the language.
You have to make sure that $\SigType$ includes the base types:
78
\[
79
	\SigType \supseteq \{ \textlog{Val}, \textlog{Expr}, \textlog{State}, \textlog{M}, \textlog{InvName}, \textlog{InvMask}, \Prop \}
80
\]
Ralf Jung's avatar
Ralf Jung committed
81 82 83
Elements of $\SigType$ are ranged over by $\sigtype$.

Each function symbol in $\SigFn$ has an associated \emph{arity} comprising a natural number $n$ and an ordered list of $n+1$ types $\type$ (the grammar of $\type$ is defined below, and depends only on $\SigType$).
84 85 86 87 88
We write
\[
	\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
\]
to express that $\sigfn$ is a function symbol with the indicated arity.
Ralf Jung's avatar
Ralf Jung committed
89 90 91 92 93 94

Furthermore, $\SigAx$ is a set of \emph{axioms}, that is, terms $\term$ of type $\Prop$.
Again, the grammar of terms and their typing rules are defined below, and depends only on $\SigType$ and $\SigFn$, not on $\SigAx$.
Elements of $\SigAx$ are ranged over by $\sigax$.

\subsection{Grammar}\label{sec:grammar}
95 96

\paragraph{Syntax.}
Ralf Jung's avatar
Ralf Jung committed
97
Iris syntax is built up from a signature $\Sig$ and a countably infinite set $\textdom{Var}$ of variables (ranged over by metavariables $x$, $y$, $z$):
98

99
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
100
  \type \bnfdef{}&
Ralf Jung's avatar
Ralf Jung committed
101
      \sigtype \mid
102
      1 \mid
Ralf Jung's avatar
Ralf Jung committed
103 104 105
      \type \times \type \mid
      \type \to \type
\\[0.4em]
Ralf Jung's avatar
Ralf Jung committed
106
  \term, \prop, \pred \bnfdef{}&
107
      \var \mid
108
      \sigfn(\term_1, \dots, \term_n) \mid
109
      () \mid
110 111
      (\term, \term) \mid
      \pi_i\; \term \mid
112
      \Lam \var:\type.\term \mid
Ralf Jung's avatar
Ralf Jung committed
113
      \term(\term)  \mid
114
      \munit \mid
Ralf Jung's avatar
Ralf Jung committed
115
      \mcore\term \mid
116 117 118 119
      \term \mtimes \term \mid
\\&
    \FALSE \mid
    \TRUE \mid
Ralf Jung's avatar
Ralf Jung committed
120
    \term =_\type \term \mid
121 122 123 124 125 126
    \prop \Ra \prop \mid
    \prop \land \prop \mid
    \prop \lor \prop \mid
    \prop * \prop \mid
    \prop \wand \prop \mid
\\&
127
    \MU \var:\type. \pred  \mid
Ralf Jung's avatar
Ralf Jung committed
128 129
    \Exists \var:\type. \prop \mid
    \All \var:\type. \prop \mid
130 131
\\&
    \knowInv{\term}{\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
132
    \ownGGhost{\term} \mid \mval(\term) \mid
133 134 135
    \ownPhys{\term} \mid
    \always\prop \mid
    {\later\prop} \mid
Ralf Jung's avatar
Ralf Jung committed
136
    \pvs[\term][\term] \prop\mid
137
    \wpre{\term}[\term]{\Ret\var.\term}
138
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
139
Recursive predicates must be \emph{guarded}: in $\MU \var. \pred$, the variable $\var$ can only appear under the later $\later$ modality.
140

141
Note that $\always$ and $\later$ bind more tightly than $*$, $\wand$, $\land$, $\lor$, and $\Ra$.
Ralf Jung's avatar
Ralf Jung committed
142
We will write $\pvs[\term] \prop$ for $\pvs[\term][\term] \prop$.
143 144
If we omit the mask, then it is $\top$ for weakest precondition $\wpre\expr{\Ret\var.\prop}$ and $\emptyset$ for primitive view shifts $\pvs \prop$.

Ralf Jung's avatar
Ralf Jung committed
145 146 147 148 149
Some propositions are \emph{timeless}, which intuitively means that step-indexing does not affect them.
This is a \emph{meta-level} assertions about propositions, defined as follows:

\[ \vctx \proves \timeless{\prop} \eqdef \vctx\mid\later\prop \proves \prop \lor \later\FALSE \]

150

151
\paragraph{Metavariable conventions.}
Ralf Jung's avatar
Ralf Jung committed
152
We introduce additional metavariables ranging over terms and generally let the choice of metavariable indicate the term's type:
153 154
\[
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
155
 \text{metavariable} & \text{type} \\\hline
156
  \term, \termB & \text{arbitrary} \\
157 158 159
  \val, \valB & \textlog{Val} \\
  \expr & \textlog{Expr} \\
  \state & \textlog{State} \\
160 161 162
\end{array}
\qquad\qquad
\begin{array}{r|l}
Ralf Jung's avatar
Ralf Jung committed
163
 \text{metavariable} & \text{type} \\\hline
164 165 166
  \iname & \textlog{InvName} \\
  \mask & \textlog{InvMask} \\
  \melt, \meltB & \textlog{M} \\
167
  \prop, \propB, \propC & \Prop \\
Ralf Jung's avatar
Ralf Jung committed
168
  \pred, \predB, \predC & \type\to\Prop \text{ (when $\type$ is clear from context)} \\
169 170 171 172
\end{array}
\]

\paragraph{Variable conventions.}
173
We often abuse notation, using the preceding \emph{term} meta-variables to range over (bound) \emph{variables}.
174
We omit type annotations in binders, when the type is clear from context.
Ralf Jung's avatar
Ralf Jung committed
175
We assume that, if a term occurs multiple times in a rule, its free variables are exactly those binders which are available at every occurrence.
176 177 178 179 180


\subsection{Types}\label{sec:types}

Iris terms are simply-typed.
Ralf Jung's avatar
Ralf Jung committed
181
The judgment $\vctx \proves \wtt{\term}{\type}$ expresses that, in variable context $\vctx$, the term $\term$ has type $\type$.
182

Ralf Jung's avatar
Ralf Jung committed
183 184
A variable context, $\vctx = x_1:\type_1, \dots, x_n:\type_n$, declares a list of variables and their types.
In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $\vctx$.
185

Ralf Jung's avatar
Ralf Jung committed
186
\judgment{Well-typed terms}{\vctx \proves_\Sig \wtt{\term}{\type}}
187 188
\begin{mathparpagebreakable}
%%% variables and function symbols
Ralf Jung's avatar
Ralf Jung committed
189
	\axiom{x : \type \proves \wtt{x}{\type}}
190
\and
Ralf Jung's avatar
Ralf Jung committed
191 192
	\infer{\vctx \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term}{\type}}
193
\and
Ralf Jung's avatar
Ralf Jung committed
194 195
	\infer{\vctx, x:\type', y:\type' \proves \wtt{\term}{\type}}
		{\vctx, x:\type' \proves \wtt{\term[x/y]}{\type}}
196
\and
Ralf Jung's avatar
Ralf Jung committed
197 198
	\infer{\vctx_1, x:\type', y:\type'', \vctx_2 \proves \wtt{\term}{\type}}
		{\vctx_1, x:\type'', y:\type', \vctx_2 \proves \wtt{\term[y/x,x/y]}{\type}}
199 200 201 202 203 204 205 206 207 208 209
\and
	\infer{
		\vctx \proves \wtt{\term_1}{\type_1} \and
		\cdots \and
		\vctx \proves \wtt{\term_n}{\type_n} \and
		\sigfn : \type_1, \dots, \type_n \to \type_{n+1} \in \SigFn
	}{
		\vctx \proves \wtt {\sigfn(\term_1, \dots, \term_n)} {\type_{n+1}}
	}
%%% products
\and
210
	\axiom{\vctx \proves \wtt{()}{1}}
211
\and
Ralf Jung's avatar
Ralf Jung committed
212 213
	\infer{\vctx \proves \wtt{\term}{\type_1} \and \vctx \proves \wtt{\termB}{\type_2}}
		{\vctx \proves \wtt{(\term,\termB)}{\type_1 \times \type_2}}
214
\and
Ralf Jung's avatar
Ralf Jung committed
215 216
	\infer{\vctx \proves \wtt{\term}{\type_1 \times \type_2} \and i \in \{1, 2\}}
		{\vctx \proves \wtt{\pi_i\,\term}{\type_i}}
217 218
%%% functions
\and
Ralf Jung's avatar
Ralf Jung committed
219 220
	\infer{\vctx, x:\type \proves \wtt{\term}{\type'}}
		{\vctx \proves \wtt{\Lam x. \term}{\type \to \type'}}
221 222
\and
	\infer
Ralf Jung's avatar
Ralf Jung committed
223 224
	{\vctx \proves \wtt{\term}{\type \to \type'} \and \wtt{\termB}{\type}}
	{\vctx \proves \wtt{\term(\termB)}{\type'}}
225
%%% monoids
226 227
\and
        \infer{}{\vctx \proves \wtt\munit{\textlog{M}}}
228
\and
Ralf Jung's avatar
Ralf Jung committed
229
	\infer{\vctx \proves \wtt\melt{\textlog{M}}}{\vctx \proves \wtt{\mcore\melt}{\textlog{M}}}
230
\and
231 232
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}} \and \vctx \proves \wtt{\meltB}{\textlog{M}}}
		{\vctx \proves \wtt{\melt \mtimes \meltB}{\textlog{M}}}
233 234 235 236 237 238
%%% props and predicates
\\
	\axiom{\vctx \proves \wtt{\FALSE}{\Prop}}
\and
	\axiom{\vctx \proves \wtt{\TRUE}{\Prop}}
\and
Ralf Jung's avatar
Ralf Jung committed
239 240
	\infer{\vctx \proves \wtt{\term}{\type} \and \vctx \proves \wtt{\termB}{\type}}
		{\vctx \proves \wtt{\term =_\type \termB}{\Prop}}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \Ra \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \land \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \lor \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop * \propB}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop} \and \vctx \proves \wtt{\propB}{\Prop}}
		{\vctx \proves \wtt{\prop \wand \propB}{\Prop}}
\and
	\infer{
258 259
		\vctx, \var:\type \proves \wtt{\term}{\type} \and
		\text{$\var$ is guarded in $\term$}
260
	}{
261
		\vctx \proves \wtt{\MU \var:\type. \term}{\type}
262 263
	}
\and
Ralf Jung's avatar
Ralf Jung committed
264 265
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\Exists x:\type. \prop}{\Prop}}
266
\and
Ralf Jung's avatar
Ralf Jung committed
267 268
	\infer{\vctx, x:\type \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\All x:\type. \prop}{\Prop}}
269 270 271
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
272
		\vctx \proves \wtt{\iname}{\textlog{InvName}}
273 274 275 276
	}{
		\vctx \proves \wtt{\knowInv{\iname}{\prop}}{\Prop}
	}
\and
277
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
278
		{\vctx \proves \wtt{\ownGGhost{\melt}}{\Prop}}
Ralf Jung's avatar
Ralf Jung committed
279 280 281
\and
	\infer{\vctx \proves \wtt{\melt}{\textlog{M}}}
		{\vctx \proves \wtt{\mval(\melt)}{\Prop}}
282
\and
283
	\infer{\vctx \proves \wtt{\state}{\textlog{State}}}
284 285 286 287 288 289 290 291 292 293
		{\vctx \proves \wtt{\ownPhys{\state}}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\always\prop}{\Prop}}
\and
	\infer{\vctx \proves \wtt{\prop}{\Prop}}
		{\vctx \proves \wtt{\later\prop}{\Prop}}
\and
	\infer{
		\vctx \proves \wtt{\prop}{\Prop} \and
294 295
		\vctx \proves \wtt{\mask}{\textlog{InvMask}} \and
		\vctx \proves \wtt{\mask'}{\textlog{InvMask}}
296
	}{
Ralf Jung's avatar
Ralf Jung committed
297
		\vctx \proves \wtt{\pvs[\mask][\mask'] \prop}{\Prop}
298 299 300
	}
\and
	\infer{
301 302 303
		\vctx \proves \wtt{\expr}{\textlog{Expr}} \and
		\vctx,\var:\textlog{Val} \proves \wtt{\term}{\Prop} \and
		\vctx \proves \wtt{\mask}{\textlog{InvMask}}
304
	}{
305
		\vctx \proves \wtt{\wpre{\expr}[\mask]{\Ret\var.\term}}{\Prop}
306 307 308
	}
\end{mathparpagebreakable}

Ralf Jung's avatar
Ralf Jung committed
309
\subsection{Proof rules}
Ralf Jung's avatar
Ralf Jung committed
310

311 312
The judgment $\vctx \mid \pfctx \proves \prop$ says that with free variables $\vctx$, proposition $\prop$ holds whenever all assumptions $\pfctx$ hold.
We implicitly assume that an arbitrary variable context, $\vctx$, is added to every constituent of the rules.
Ralf Jung's avatar
Ralf Jung committed
313
Furthermore, an arbitrary \emph{boxed} assertion context $\always\pfctx$ may be added to every constituent.
Ralf Jung's avatar
Ralf Jung committed
314
Axioms $\vctx \mid \prop \provesIff \propB$ indicate that both $\vctx \mid \prop \proves \propB$ and $\vctx \mid \propB \proves \prop$ can be derived.
315

316
\judgment{}{\vctx \mid \pfctx \proves \prop}
Ralf Jung's avatar
Ralf Jung committed
317
\paragraph{Laws of intuitionistic higher-order logic with equality.}
318
This is entirely standard.
319 320
\begin{mathparpagebreakable}
\infer[Asm]
321 322 323
  {\prop \in \pfctx}
  {\pfctx \proves \prop}
\and
324
\infer[Eq]
325 326
  {\pfctx \proves \prop \\ \pfctx \proves \term =_\type \term'}
  {\pfctx \proves \prop[\term'/\term]}
327
\and
328 329 330 331 332 333 334 335 336 337 338 339
\infer[Refl]
  {}
  {\pfctx \proves \term =_\type \term}
\and
\infer[$\bot$E]
  {\pfctx \proves \FALSE}
  {\pfctx \proves \prop}
\and
\infer[$\top$I]
  {}
  {\pfctx \proves \TRUE}
\and
340
\infer[$\wedge$I]
341 342 343
  {\pfctx \proves \prop \\ \pfctx \proves \propB}
  {\pfctx \proves \prop \wedge \propB}
\and
344
\infer[$\wedge$EL]
345 346 347
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \prop}
\and
348
\infer[$\wedge$ER]
349 350 351
  {\pfctx \proves \prop \wedge \propB}
  {\pfctx \proves \propB}
\and
352
\infer[$\vee$IL]
353 354 355
  {\pfctx \proves \prop }
  {\pfctx \proves \prop \vee \propB}
\and
356
\infer[$\vee$IR]
357 358 359
  {\pfctx \proves \propB}
  {\pfctx \proves \prop \vee \propB}
\and
360 361 362 363 364 365
\infer[$\vee$E]
  {\pfctx \proves \prop \vee \propB \\
   \pfctx, \prop \proves \propC \\
   \pfctx, \propB \proves \propC}
  {\pfctx \proves \propC}
\and
366
\infer[$\Ra$I]
367 368 369
  {\pfctx, \prop \proves \propB}
  {\pfctx \proves \prop \Ra \propB}
\and
370
\infer[$\Ra$E]
371 372 373
  {\pfctx \proves \prop \Ra \propB \\ \pfctx \proves \prop}
  {\pfctx \proves \propB}
\and
374 375 376
\infer[$\forall$I]
  { \vctx,\var : \type\mid\pfctx \proves \prop}
  {\vctx\mid\pfctx \proves \forall \var: \type.\; \prop}
377
\and
378 379 380 381
\infer[$\forall$E]
  {\vctx\mid\pfctx \proves \forall \var :\type.\; \prop \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \prop[\term/\var]}
382
\and
383 384 385 386
\infer[$\exists$I]
  {\vctx\mid\pfctx \proves \prop[\term/\var] \\
   \vctx \proves \wtt\term\type}
  {\vctx\mid\pfctx \proves \exists \var: \type. \prop}
387
\and
388 389 390 391
\infer[$\exists$E]
  {\vctx\mid\pfctx \proves \exists \var: \type.\; \prop \\
   \vctx,\var : \type\mid\pfctx , \prop \proves \propB}
  {\vctx\mid\pfctx \proves \propB}
392
\and
393 394 395
\infer[$\lambda$]
  {}
  {\pfctx \proves (\Lam\var: \type. \prop)(\term) =_{\type\to\type'} \prop[\term/\var]}
396
\and
397 398 399 400
\infer[$\mu$]
  {}
  {\pfctx \proves \mu\var: \type. \prop =_{\type} \prop[\mu\var: \type. \prop/\var]}
\end{mathparpagebreakable}
401

Ralf Jung's avatar
Ralf Jung committed
402
\paragraph{Laws of (affine) bunched implications.}
403 404
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
405 406 407
  \TRUE * \prop &\provesIff& \prop \\
  \prop * \propB &\provesIff& \propB * \prop \\
  (\prop * \propB) * \propC &\provesIff& \prop * (\propB * \propC)
408 409
\end{array}
\and
410
\infer[$*$-mono]
411 412 413
  {\prop_1 \proves \propB_1 \and
   \prop_2 \proves \propB_2}
  {\prop_1 * \prop_2 \proves \propB_1 * \propB_2}
414
\and
415
\inferB[$\wand$I-E]
416 417
  {\prop * \propB \proves \propC}
  {\prop \proves \propB \wand \propC}
418 419
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
420
\paragraph{Laws for ghosts and physical resources.}
421 422
\begin{mathpar}
\begin{array}{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
423
\ownGGhost{\melt} * \ownGGhost{\meltB} &\provesIff&  \ownGGhost{\melt \mtimes \meltB} \\
Ralf Jung's avatar
Ralf Jung committed
424
\ownGGhost{\melt} &\provesIff& \mval(\melt) \\
Ralf Jung's avatar
Ralf Jung committed
425
\TRUE &\proves&  \ownGGhost{\munit}
426 427
\end{array}
\and
Ralf Jung's avatar
Ralf Jung committed
428
\and
429
\begin{array}{c}
Ralf Jung's avatar
Ralf Jung committed
430
\ownPhys{\state} * \ownPhys{\state'} \proves \FALSE
431 432 433
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
434
\paragraph{Laws for the later modality.}
435
\begin{mathpar}
436
\infer[$\later$-mono]
437 438 439
  {\pfctx \proves \prop}
  {\pfctx \proves \later{\prop}}
\and
440 441 442
\infer[L{\"o}b]
  {}
  {(\later\prop\Ra\prop) \proves \prop}
443
\and
444 445 446 447 448
\infer[$\later$-$\exists$]
  {\text{$\type$ is inhabited}}
  {\later{\Exists x:\type.\prop} \proves \Exists x:\type. \later\prop}
\\\\
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
449 450
  \later{(\prop \wedge \propB)} &\provesIff& \later{\prop} \wedge \later{\propB}  \\
  \later{(\prop \vee \propB)} &\provesIff& \later{\prop} \vee \later{\propB} \\
451 452
\end{array}
\and
453
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
454 455 456
  \later{\All x.\prop} &\provesIff& \All x. \later\prop \\
  \Exists x. \later\prop &\proves& \later{\Exists x.\prop}  \\
  \later{(\prop * \propB)} &\provesIff& \later\prop * \later\propB
457 458 459
\end{array}
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
460 461 462 463 464 465 466 467 468
\begin{mathpar}
\infer
{\text{$\term$ or $\term'$ is a discrete COFE element}}
{\timeless{\term =_\type \term'}}

\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\ownGGhost\melt}}

Ralf Jung's avatar
Ralf Jung committed
469 470 471 472
\infer
{\text{$\melt$ is a discrete COFE element}}
{\timeless{\mval(\melt)}}

Ralf Jung's avatar
Ralf Jung committed
473
\infer{}
Ralf Jung's avatar
Ralf Jung committed
474
{\timeless{\ownPhys\state}}
Ralf Jung's avatar
Ralf Jung committed
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \Ra \propB}}

\infer
{\vctx \proves \timeless{\propB}}
{\vctx \proves \timeless{\prop \wand \propB}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\All\var:\type.\prop}}

\infer
{\vctx,\var:\type \proves \timeless{\prop}}
{\vctx \proves \timeless{\Exists\var:\type.\prop}}
\end{mathpar}


Ralf Jung's avatar
Ralf Jung committed
494
\paragraph{Laws for the always modality.}
495
\begin{mathpar}
496
\infer[$\always$I]
497 498 499
  {\always{\pfctx} \proves \prop}
  {\always{\pfctx} \proves \always{\prop}}
\and
500
\infer[$\always$E]{}
Ralf Jung's avatar
Ralf Jung committed
501
  {\always{\prop} \proves \prop}
502 503
\and
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
504 505 506
  \always{(\prop * \propB)} &\proves& \always{(\prop \land \propB)} \\
  \always{\prop} * \propB &\proves& \always{\prop} \land \propB \\
  \always{\later\prop} &\provesIff& \later\always{\prop} \\
507 508
\end{array}
\and
509
\begin{array}[c]{rMcMl}
Ralf Jung's avatar
Ralf Jung committed
510 511 512 513
  \always{(\prop \land \propB)} &\provesIff& \always{\prop} \land \always{\propB} \\
  \always{(\prop \lor \propB)} &\provesIff& \always{\prop} \lor \always{\propB} \\
  \always{\All x. \prop} &\provesIff& \All x. \always{\prop} \\
  \always{\Exists x. \prop} &\provesIff& \Exists x. \always{\prop} \\
514
\end{array}
Ralf Jung's avatar
Ralf Jung committed
515
\and
Ralf Jung's avatar
Ralf Jung committed
516
{ \term =_\type \term' \proves \always \term =_\type \term'}
Ralf Jung's avatar
Ralf Jung committed
517
\and
Ralf Jung's avatar
Ralf Jung committed
518
{ \knowInv\iname\prop \proves \always \knowInv\iname\prop}
Ralf Jung's avatar
Ralf Jung committed
519
\and
Ralf Jung's avatar
Ralf Jung committed
520
{ \ownGGhost{\mcore\melt} \proves \always \ownGGhost{\mcore\melt}}
521 522
\end{mathpar}

Ralf Jung's avatar
Ralf Jung committed
523
\paragraph{Laws of primitive view shifts.}
Ralf Jung's avatar
Ralf Jung committed
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
\begin{mathpar}
\infer[pvs-intro]
{}{\prop \proves \pvs[\mask] \prop}

\infer[pvs-mono]
{\prop \proves \propB}
{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1][\mask_2] \propB}

\infer[pvs-timeless]
{\timeless\prop}
{\later\prop \proves \pvs[\mask] \prop}

\infer[pvs-trans]
{\mask_2 \subseteq \mask_1 \cup \mask_3}
{\pvs[\mask_1][\mask_2] \pvs[\mask_2][\mask_3] \prop \proves \pvs[\mask_1][\mask_3] \prop}

\infer[pvs-mask-frame]
{}{\pvs[\mask_1][\mask_2] \prop \proves \pvs[\mask_1 \uplus \mask_f][\mask_2 \uplus \mask_f] \prop}

\infer[pvs-frame]
{}{\propB * \pvs[\mask_1][\mask_2]\prop \proves \pvs[\mask_1][\mask_2] \propB * \prop}

Ralf Jung's avatar
Ralf Jung committed
546
\inferH{pvs-allocI}
Ralf Jung's avatar
Ralf Jung committed
547 548 549
{\text{$\mask$ is infinite}}
{\later\prop \proves \pvs[\mask] \Exists \iname \in \mask. \knowInv\iname\prop}

Ralf Jung's avatar
Ralf Jung committed
550
\inferH{pvs-openI}
Ralf Jung's avatar
Ralf Jung committed
551 552
{}{\knowInv\iname\prop \proves \pvs[\set\iname][\emptyset] \later\prop}

Ralf Jung's avatar
Ralf Jung committed
553
\inferH{pvs-closeI}
Ralf Jung's avatar
Ralf Jung committed
554 555
{}{\knowInv\iname\prop \land \later\prop \proves \pvs[\emptyset][\set\iname] \TRUE}

Ralf Jung's avatar
Ralf Jung committed
556
\inferH{pvs-update}
Ralf Jung's avatar
Ralf Jung committed
557 558 559
{\melt \mupd \meltsB}
{\ownGGhost\melt \proves \pvs[\mask] \Exists\meltB\in\meltsB. \ownGGhost\meltB}
\end{mathpar}
560

Ralf Jung's avatar
Ralf Jung committed
561
\paragraph{Laws of weakest preconditions.}
Ralf Jung's avatar
Ralf Jung committed
562 563
\begin{mathpar}
\infer[wp-value]
564
{}{\prop[\val/\var] \proves \wpre{\val}[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
565 566

\infer[wp-mono]
567
{\mask_1 \subseteq \mask_2 \and \var:\textlog{val}\mid\prop \proves \propB}
568
{\wpre\expr[\mask_1]{\Ret\var.\prop} \proves \wpre\expr[\mask_2]{\Ret\var.\propB}}
Ralf Jung's avatar
Ralf Jung committed
569 570

\infer[pvs-wp]
571
{}{\pvs[\mask] \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
572 573

\infer[wp-pvs]
574
{}{\wpre\expr[\mask]{\Ret\var.\pvs[\mask] \prop} \proves \wpre\expr[\mask]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
575 576 577

\infer[wp-atomic]
{\mask_2 \subseteq \mask_1 \and \physatomic{\expr}}
578 579
{\pvs[\mask_1][\mask_2] \wpre\expr[\mask_2]{\Ret\var. \pvs[\mask_2][\mask_1]\prop}
 \proves \wpre\expr[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
580 581

\infer[wp-frame]
582
{}{\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
583 584 585

\infer[wp-frame-step]
{\toval(\expr) = \bot}
586
{\later\propB * \wpre\expr[\mask]{\Ret\var.\prop} \proves \wpre\expr[\mask]{\Ret\var.\propB*\prop}}
Ralf Jung's avatar
Ralf Jung committed
587 588 589

\infer[wp-bind]
{\text{$\lctx$ is a context}}
590
{\wpre\expr[\mask]{\Ret\var. \wpre{\lctx(\ofval(\var))}[\mask]{\Ret\varB.\prop}} \proves \wpre{\lctx(\expr)}[\mask]{\Ret\varB.\prop}}
Ralf Jung's avatar
Ralf Jung committed
591
\end{mathpar}
592

593
\subsection{Lifting of operational semantics}\label{sec:lifting}
Ralf Jung's avatar
Ralf Jung committed
594 595 596 597 598 599 600

\begin{mathparpagebreakable}
  \infer[wp-lift-step]
  {\mask_2 \subseteq \mask_1 \and
   \toval(\expr_1) = \bot \and
   \red(\expr_1, \state_1) \and
   \All \expr_2, \state_2, \expr'. \expr_1,\state_1 \step \expr_2,\state_2,\expr' \Ra \pred(\expr_2,\state_2,\expr')}
601
  {\pvs[\mask_1][\mask_2] \later\ownPhys{\state_1} * \later\All \expr_2, \state_2, \expr'. \pred(\expr_2, \state_2, \expr') \land \ownPhys{\state_2} \wand \pvs[\mask_2][\mask_1] \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr'}[\top]{\Ret\var.\TRUE} {}\\\proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
602 603 604 605 606

  \infer[wp-lift-pure-step]
  {\toval(\expr_1) = \bot \and
   \All \state_1. \red(\expr_1, \state_1) \and
   \All \state_1, \expr_2, \state_2, \expr'. \expr_1,\state_1 \step \expr_2,\state_2,\expr' \Ra \state_1 = \state_2 \land \pred(\expr_2,\expr')}
607
  {\later\All \expr_2, \expr'. \pred(\expr_2, \expr')  \wand \wpre{\expr_2}[\mask_1]{\Ret\var.\prop} * \wpre{\expr'}[\top]{\Ret\var.\TRUE} \proves \wpre{\expr_1}[\mask_1]{\Ret\var.\prop}}
Ralf Jung's avatar
Ralf Jung committed
608 609
\end{mathparpagebreakable}

610
Here we define $\wpre{\expr'}[\mask]{\Ret\var.\prop} \eqdef \TRUE$ if $\expr' = \bot$ (remember that our stepping relation can, but does not have to, define a forked-off expression).
611 612 613

\subsection{Adequacy}

Ralf Jung's avatar
Ralf Jung committed
614
The adequacy statement concerning functional correctness reads as follows:
615
\begin{align*}
Ralf Jung's avatar
Ralf Jung committed
616
 &\All \mask, \expr, \val, \pred, \state, \melt, \state', \tpool'.
Ralf Jung's avatar
Ralf Jung committed
617
 \\&(\All n. \melt \in \mval_n) \Ra
618
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
Ralf Jung's avatar
Ralf Jung committed
619 620
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{[\val] \dplus \tpool'} \Ra
621 622
     \\&\pred(\val)
\end{align*}
Ralf Jung's avatar
Ralf Jung committed
623
where $\pred$ is a \emph{meta-level} predicate over values, \ie it can mention neither resources nor invariants.
624

Ralf Jung's avatar
Ralf Jung committed
625 626 627 628 629 630 631 632 633 634 635
Furthermore, the following adequacy statement shows that our weakest preconditions imply that the execution never gets \emph{stuck}: Every expression in the thread pool either is a value, or can reduce further.
\begin{align*}
 &\All \mask, \expr, \state, \melt, \state', \tpool'.
 \\&(\All n. \melt \in \mval_n) \Ra
 \\&( \ownPhys\state * \ownGGhost\melt \proves \wpre{\expr}[\mask]{x.\; \pred(x)}) \Ra
 \\&\cfg{\state}{[\expr]} \step^\ast
     \cfg{\state'}{\tpool'} \Ra
     \\&\All\expr'\in\tpool'. \toval(\expr) \neq \bot \lor \red(\expr, \state')
\end{align*}
Notice that this is stronger than saying that the thread pool can reduce; we actually assert that \emph{every} non-finished thread can take a step.

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

% RJ: If we want this section back, we should port it to primitive view shifts and prove it in Coq.
% \subsection{Unsound rules}

% Some rule suggestions (or rather, wishes) keep coming up, which are unsound. We collect them here.
% \begin{mathpar}
% 	\infer
% 	{P \vs Q}
% 	{\later P \vs \later Q}
% 	\and
% 	\infer
% 	{\later(P \vs Q)}
% 	{\later P \vs \later Q}
% \end{mathpar}

% Of course, the second rule implies the first, so let's focus on that.
% Since implications work under $\later$, from $\later P$ we can get $\later \pvs{Q}$.
% If we now try to prove $\pvs{\later Q}$, we will be unable to establish world satisfaction in the new world:
% We have no choice but to use $\later \pvs{Q}$ at one step index below what we are operating on (because we have it under a $\later$).
% We can easily get world satisfaction for that lower step-index (by downwards-closedness of step-indexed predicates).
% We can, however, not make much use of the world satisfaction that we get out, becaase it is one step-index too low.




661 662 663 664
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "iris"
%%% End: