wsat.v 7.49 KB
Newer Older
1
From iris.base_logic.lib Require Export own.
Ralf Jung's avatar
Ralf Jung committed
2
From stdpp Require Export coPset.
3
From iris.algebra Require Import gmap auth agree gset coPset.
4
From iris.proofmode Require Import tactics.
5
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
6

7
8
9
10
11
12
13
14
15
16
17
18
Module invG.
  Class invG (Σ : gFunctors) : Set := WsatG {
    inv_inG :> inG Σ (authR (gmapUR positive (agreeR (laterC (iPreProp Σ)))));
    enabled_inG :> inG Σ coPset_disjR;
    disabled_inG :> inG Σ (gset_disjR positive);
    invariant_name : gname;
    enabled_name : gname;
    disabled_name : gname;
  }.
End invG.
Import invG.

19
20
Definition invariant_unfold {Σ} (P : iProp Σ) : agree (later (iPreProp Σ)) :=
  to_agree (Next (iProp_unfold P)).
21
Definition ownI `{invG Σ} (i : positive) (P : iProp Σ) : iProp Σ :=
22
  own invariant_name ( {[ i := invariant_unfold P ]}).
23
Arguments ownI {_ _} _ _%I.
24
Typeclasses Opaque ownI.
25
Instance: Params (@invariant_unfold) 1.
26
Instance: Params (@ownI) 3.
27

28
Definition ownE `{invG Σ} (E : coPset) : iProp Σ :=
29
30
  own enabled_name (CoPset E).
Typeclasses Opaque ownE.
31
Instance: Params (@ownE) 3.
32

33
Definition ownD `{invG Σ} (E : gset positive) : iProp Σ :=
34
35
  own disabled_name (GSet E).
Typeclasses Opaque ownD.
36
Instance: Params (@ownD) 3.
37

38
Definition wsat `{invG Σ} : iProp Σ :=
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  locked ( I : gmap positive (iProp Σ),
40
41
    own invariant_name ( (invariant_unfold <$> I : gmap _ _)) 
    [ map] i  Q  I,  Q  ownD {[i]}  ownE {[i]})%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
42

43
44
Section wsat.
Context `{invG Σ}.
45
46
Implicit Types P : iProp Σ.

Robbert Krebbers's avatar
Robbert Krebbers committed
47
(* Invariants *)
48
49
Instance invariant_unfold_contractive : Contractive (@invariant_unfold Σ).
Proof. solve_contractive. Qed.
50
Global Instance ownI_contractive i : Contractive (@ownI Σ _ i).
51
Proof. solve_contractive. Qed.
52
Global Instance ownI_persistent i P : Persistent (ownI i P).
53
Proof. rewrite /ownI. apply _. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
54

55
Lemma ownE_empty : (|==> ownE )%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
56
Proof.
Ralf Jung's avatar
Ralf Jung committed
57
  rewrite /uPred_valid /bi_emp_valid.
Robbert Krebbers's avatar
Robbert Krebbers committed
58
59
  by rewrite (own_unit (coPset_disjUR) enabled_name).
Qed.
60
Lemma ownE_op E1 E2 : E1 ## E2  ownE (E1  E2)  ownE E1  ownE E2.
61
Proof. intros. by rewrite /ownE -own_op coPset_disj_union. Qed.
62
Lemma ownE_disjoint E1 E2 : ownE E1  ownE E2  E1 ## E2.
63
Proof. rewrite /ownE -own_op own_valid. by iIntros (?%coPset_disj_valid_op). Qed.
64
Lemma ownE_op' E1 E2 : E1 ## E2  ownE (E1  E2)  ownE E1  ownE E2.
Robbert Krebbers's avatar
Robbert Krebbers committed
65
Proof.
66
  iSplit; [iIntros "[% ?]"; by iApply ownE_op|].
67
  iIntros "HE". iDestruct (ownE_disjoint with "HE") as %?.
68
  iSplit; first done. iApply ownE_op; by try iFrame.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
Qed.
70
Lemma ownE_singleton_twice i : ownE {[i]}  ownE {[i]}  False.
71
Proof. rewrite ownE_disjoint. iIntros (?); set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
72

73
Lemma ownD_empty : (|==> ownD )%I.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
Proof.
Ralf Jung's avatar
Ralf Jung committed
75
  rewrite /uPred_valid /bi_emp_valid.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
  by rewrite (own_unit (gset_disjUR positive) disabled_name).
Qed.
78
Lemma ownD_op E1 E2 : E1 ## E2  ownD (E1  E2)  ownD E1  ownD E2.
79
Proof. intros. by rewrite /ownD -own_op gset_disj_union. Qed.
80
Lemma ownD_disjoint E1 E2 : ownD E1  ownD E2  E1 ## E2.
81
Proof. rewrite /ownD -own_op own_valid. by iIntros (?%gset_disj_valid_op). Qed.
82
Lemma ownD_op' E1 E2 : E1 ## E2  ownD (E1  E2)  ownD E1  ownD E2.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
Proof.
84
  iSplit; [iIntros "[% ?]"; by iApply ownD_op|].
85
  iIntros "HE". iDestruct (ownD_disjoint with "HE") as %?.
86
  iSplit; first done. iApply ownD_op; by try iFrame.
Robbert Krebbers's avatar
Robbert Krebbers committed
87
Qed.
88
Lemma ownD_singleton_twice i : ownD {[i]}  ownD {[i]}  False.
89
90
Proof. rewrite ownD_disjoint. iIntros (?); set_solver. Qed.

91
Lemma invariant_lookup (I : gmap positive (iProp Σ)) i P :
92
  own invariant_name ( (invariant_unfold <$> I : gmap _ _)) 
93
  own invariant_name ( {[i := invariant_unfold P]}) 
Ralf Jung's avatar
Ralf Jung committed
94
   Q, I !! i = Some Q   (Q  P).
Robbert Krebbers's avatar
Robbert Krebbers committed
95
Proof.
96
  rewrite -own_op own_valid auth_validI /=. iIntros "[#HI #HvI]".
97
98
  iDestruct "HI" as (I') "HI". rewrite gmap_equivI gmap_validI.
  iSpecialize ("HI" $! i). iSpecialize ("HvI" $! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
99
  rewrite left_id_L lookup_fmap lookup_op lookup_singleton bi.option_equivI.
100
101
102
103
104
105
106
  case: (I !! i)=> [Q|] /=; [|case: (I' !! i)=> [Q'|] /=; by iExFalso].
  iExists Q; iSplit; first done.
  iAssert (invariant_unfold Q  invariant_unfold P)%I as "?".
  { case: (I' !! i)=> [Q'|] //=.
    iRewrite "HI" in "HvI". rewrite uPred.option_validI agree_validI.
    iRewrite -"HvI" in "HI". by rewrite agree_idemp. }
  rewrite /invariant_unfold.
Robbert Krebbers's avatar
Robbert Krebbers committed
107
  by rewrite agree_equivI bi.later_equivI iProp_unfold_equivI.
Robbert Krebbers's avatar
Robbert Krebbers committed
108
Qed.
109

110
Lemma ownI_open i P : wsat  ownI i P  ownE {[i]}  wsat   P  ownD {[i]}.
111
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
  rewrite /ownI /wsat -!lock.
113
  iIntros "(Hw & Hi & HiE)". iDestruct "Hw" as (I) "[Hw HI]".
114
  iDestruct (invariant_lookup I i P with "[$]") as (Q ?) "#HPQ".
115
  iDestruct (big_opM_delete _ _ i with "HI") as "[[[HQ $]|HiE'] HI]"; eauto.
116
  - iSplitR "HQ"; last by iNext; iRewrite -"HPQ".
117
    iExists I. iFrame "Hw". iApply (big_opM_delete _ _ i); eauto.
118
    iFrame "HI"; eauto.
119
  - iDestruct (ownE_singleton_twice with "[$HiE $HiE']") as %[].
120
Qed.
121
Lemma ownI_close i P : wsat  ownI i P   P  ownD {[i]}  wsat  ownE {[i]}.
122
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
  rewrite /ownI /wsat -!lock.
124
  iIntros "(Hw & Hi & HP & HiD)". iDestruct "Hw" as (I) "[Hw HI]".
125
  iDestruct (invariant_lookup with "[$]") as (Q ?) "#HPQ".
126
  iDestruct (big_opM_delete _ _ i with "HI") as "[[[HQ ?]|$] HI]"; eauto.
127
  - iDestruct (ownD_singleton_twice with "[$]") as %[].
128
  - iExists I. iFrame "Hw". iApply (big_opM_delete _ _ i); eauto.
129
130
131
132
133
    iFrame "HI". iLeft. iFrame "HiD". by iNext; iRewrite "HPQ".
Qed.

Lemma ownI_alloc φ P :
  ( E : gset positive,  i, i  E  φ i) 
Ralf Jung's avatar
Ralf Jung committed
134
  wsat   P ==  i, ⌜φ i  wsat  ownI i P.
Robbert Krebbers's avatar
Robbert Krebbers committed
135
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
  iIntros (Hfresh) "[Hw HP]". rewrite /wsat -!lock.
137
  iDestruct "Hw" as (I) "[Hw HI]".
Robbert Krebbers's avatar
Robbert Krebbers committed
138
  iMod (own_unit (gset_disjUR positive) disabled_name) as "HE".
139
  iMod (own_updateP with "[$]") as "HE".
140
  { apply (gset_disj_alloc_empty_updateP_strong' (λ i, I !! i = None  φ i)).
141
142
143
    intros E. destruct (Hfresh (E  dom _ I))
      as (i & [? HIi%not_elem_of_dom]%not_elem_of_union & ?); eauto. }
  iDestruct "HE" as (X) "[Hi HE]"; iDestruct "Hi" as %(i & -> & HIi & ?).
144
  iMod (own_update with "Hw") as "[Hw HiP]".
145
146
  { eapply auth_update_alloc,
     (alloc_singleton_local_update _ i (invariant_unfold P)); last done.
147
    by rewrite /= lookup_fmap HIi. }
148
  iModIntro; iExists i;  iSplit; [done|]. rewrite /ownI; iFrame "HiP".
149
150
  iExists (<[i:=P]>I); iSplitL "Hw".
  { by rewrite fmap_insert insert_singleton_op ?lookup_fmap ?HIi. }
151
  iApply (big_opM_insert _ I); first done.
152
  iFrame "HI". iLeft. by rewrite /ownD; iFrame.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
Qed.
154
155
156
157
158

Lemma ownI_alloc_open φ P :
  ( E : gset positive,  i, i  E  φ i) 
  wsat ==  i, ⌜φ i  (ownE {[i]} - wsat)  ownI i P  ownD {[i]}.
Proof.
159
  iIntros (Hfresh) "Hw". rewrite /wsat -!lock. iDestruct "Hw" as (I) "[Hw HI]".
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  iMod (own_unit (gset_disjUR positive) disabled_name) as "HD".
161
  iMod (own_updateP with "[$]") as "HD".
162
163
164
165
166
167
168
169
170
171
172
173
  { apply (gset_disj_alloc_empty_updateP_strong' (λ i, I !! i = None  φ i)).
    intros E. destruct (Hfresh (E  dom _ I))
      as (i & [? HIi%not_elem_of_dom]%not_elem_of_union & ?); eauto. }
  iDestruct "HD" as (X) "[Hi HD]"; iDestruct "Hi" as %(i & -> & HIi & ?).
  iMod (own_update with "Hw") as "[Hw HiP]".
  { eapply auth_update_alloc,
     (alloc_singleton_local_update _ i (invariant_unfold P)); last done.
    by rewrite /= lookup_fmap HIi. }
  iModIntro; iExists i;  iSplit; [done|]. rewrite /ownI; iFrame "HiP".
  rewrite -/(ownD _). iFrame "HD".
  iIntros "HE". iExists (<[i:=P]>I); iSplitL "Hw".
  { by rewrite fmap_insert insert_singleton_op ?lookup_fmap ?HIi. }
174
  iApply (big_opM_insert _ I); first done.
175
176
  iFrame "HI". by iRight.
Qed.
177
End wsat.