derived.v 38.7 KB
Newer Older
1
2
3
4
5
6
7
From iris.base_logic Require Export primitive.
Import uPred_entails uPred_primitive.

Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Instance: Params (@uPred_iff) 1.
Infix "↔" := uPred_iff : uPred_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
8
9
10
11
12
13
14
15
16
17
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
  Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
  (at level 20, n at level 9, P at level 20,
   format "▷^ n  P") : uPred_scope.
Notation "▷? p P" := (uPred_laterN (Nat.b2n p) P)
  (at level 20, p at level 9, P at level 20,
   format "▷? p  P") : uPred_scope.

18
19
20
21
22
Definition uPred_always_if {M} (p : bool) (P : uPred M) : uPred M :=
  (if p then  P else P)%I.
Instance: Params (@uPred_always_if) 2.
Arguments uPred_always_if _ !_ _/.
Notation "□? p P" := (uPred_always_if p P)
Robbert Krebbers's avatar
Robbert Krebbers committed
23
  (at level 20, p at level 9, P at level 20, format "□? p  P").
24

25
26
Definition uPred_except_0 {M} (P : uPred M) : uPred M :=  False  P.
Notation "◇ P" := (uPred_except_0 P)
27
  (at level 20, right associativity) : uPred_scope.
28
29
Instance: Params (@uPred_except_0) 1.
Typeclasses Opaque uPred_except_0.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Class TimelessP {M} (P : uPred M) := timelessP :  P   P.
Arguments timelessP {_} _ {_}.

Class PersistentP {M} (P : uPred M) := persistentP : P   P.
Arguments persistentP {_} _ {_}.

Module uPred_derived.
Section derived.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)

(* Derived logical stuff *)
Lemma False_elim P : False  P.
48
Proof. by apply (pure_elim' False). Qed.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
Lemma True_intro P : P  True.
Proof. by apply pure_intro. Qed.

Lemma and_elim_l' P Q R : (P  R)  P  Q  R.
Proof. by rewrite and_elim_l. Qed.
Lemma and_elim_r' P Q R : (Q  R)  P  Q  R.
Proof. by rewrite and_elim_r. Qed.
Lemma or_intro_l' P Q R : (P  Q)  P  Q  R.
Proof. intros ->; apply or_intro_l. Qed.
Lemma or_intro_r' P Q R : (P  R)  P  Q  R.
Proof. intros ->; apply or_intro_r. Qed.
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : (P  Ψ a)  P   a, Ψ a.
Proof. intros ->; apply exist_intro. Qed.
Lemma forall_elim' {A} P (Ψ : A  uPred M) : (P   a, Ψ a)   a, P  Ψ a.
Proof. move=> HP a. by rewrite HP forall_elim. Qed.

Hint Resolve pure_intro.
Hint Resolve or_elim or_intro_l' or_intro_r'.
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.

Lemma impl_intro_l P Q R : (Q  P  R)  P  Q  R.
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
Lemma impl_elim_l P Q : (P  Q)  P  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : P  (P  Q)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : (Q  P  R)  P  Q  R.
Proof. intros; apply impl_elim with P; auto. Qed.
80
Lemma impl_entails P Q : (P  Q)%I  P  Q.
81
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
82
83
Lemma entails_impl P Q : (P  Q)  (P  Q)%I.
Proof. intro. apply impl_intro_l. auto. Qed.
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Lemma and_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma and_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply and_mono. Qed.

Lemma or_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma or_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply or_mono. Qed.

Lemma impl_mono P P' Q Q' : (Q  P)  (P'  Q')  (P  P')  Q  Q'.
Proof.
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
  apply impl_elim with P; eauto.
Qed.
Lemma forall_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof.
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
Qed.
Lemma exist_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof. intros HΦ. apply exist_elim=> a; rewrite (HΦ a); apply exist_intro. Qed.

Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance and_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance or_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
126
127
128
Global Instance impl_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
129
130
131
Global Instance forall_mono' A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
132
133
134
Global Instance forall_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
135
Global Instance exist_mono' A :
136
137
138
139
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance exist_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
Proof. intros P1 P2; apply exist_mono. Qed.

Global Instance and_idem : IdemP () (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_idem : IdemP () (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_comm : Comm () (@uPred_and M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance True_and : LeftId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_True : RightId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_or : LeftId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_False : RightId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_assoc : Assoc () (@uPred_and M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance or_comm : Comm () (@uPred_or M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance or_assoc : Assoc () (@uPred_or M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance True_impl : LeftId () True%I (@uPred_impl M).
Proof.
  intros P; apply (anti_symm ()).
  - by rewrite -(left_id True%I uPred_and (_  _)%I) impl_elim_r.
  - by apply impl_intro_l; rewrite left_id.
Qed.
176
177
178
179
180
Lemma False_impl P : (False  P)  True.
Proof.
  apply (anti_symm ()); [by auto|].
  apply impl_intro_l. rewrite left_absorb. auto.
Qed.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

Lemma exists_impl_forall {A} P (Ψ : A  uPred M) :
  (( x : A, Ψ x)  P)   x : A, Ψ x  P.
Proof.
  apply equiv_spec; split.
  - apply forall_intro=>x. by rewrite -exist_intro.
  - apply impl_intro_r, impl_elim_r', exist_elim=>x.
    apply impl_intro_r. by rewrite (forall_elim x) impl_elim_r.
Qed.

Lemma or_and_l P Q R : P  Q  R  (P  Q)  (P  R).
Proof.
  apply (anti_symm ()); first auto.
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
Qed.
Lemma or_and_r P Q R : P  Q  R  (P  R)  (Q  R).
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
Lemma and_or_l P Q R : P  (Q  R)  P  Q  P  R.
Proof.
  apply (anti_symm ()); last auto.
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
Qed.
Lemma and_or_r P Q R : (P  Q)  R  P  R  Q  R.
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
Lemma and_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
Proof.
  apply (anti_symm ()).
  - apply impl_elim_r'. apply exist_elim=>a. apply impl_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=>a. apply and_intro; first by rewrite and_elim_l.
    by rewrite -(exist_intro a) and_elim_r.
Qed.
Lemma and_exist_r {A} P (Φ: A  uPred M) : ( a, Φ a)  P   a, Φ a  P.
Proof.
  rewrite -(comm _ P) and_exist_l. apply exist_proper=>a. by rewrite comm.
Qed.
217
218
219
220
221
222
223
Lemma or_exist {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
Proof.
  apply (anti_symm ()).
  - apply exist_elim=> a. by rewrite -!(exist_intro a).
  - apply or_elim; apply exist_elim=> a; rewrite -(exist_intro a); auto.
Qed.
224

225
Lemma pure_elim φ Q R : (Q  ⌜φ⌝)  (φ  Q  R)  Q  R.
226
227
228
229
Proof.
  intros HQ HQR. rewrite -(idemp uPred_and Q) {1}HQ.
  apply impl_elim_l', pure_elim'=> ?. by apply entails_impl, HQR.
Qed.
Ralf Jung's avatar
Ralf Jung committed
230
Lemma pure_mono φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
231
232
233
Proof. intros; apply pure_elim with φ1; eauto. Qed.
Global Instance pure_mono' : Proper (impl ==> ()) (@uPred_pure M).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
234
Lemma pure_iff φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
235
Proof. intros [??]; apply (anti_symm _); auto using pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
236
Lemma pure_intro_l φ Q R : φ  (⌜φ⌝  Q  R)  Q  R.
237
Proof. intros ? <-; auto using pure_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
238
Lemma pure_intro_r φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
239
Proof. intros ? <-; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
240
Lemma pure_intro_impl φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
241
Proof. intros ? ->. eauto using pure_intro_l, impl_elim_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
242
Lemma pure_elim_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
243
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
244
Lemma pure_elim_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
245
Proof. intros; apply pure_elim with φ; eauto. Qed.
246

Ralf Jung's avatar
Ralf Jung committed
247
Lemma pure_True (φ : Prop) : φ  ⌜φ⌝  True.
248
Proof. intros; apply (anti_symm _); auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
249
Lemma pure_False (φ : Prop) : ¬φ  ⌜φ⌝  False.
250
Proof. intros; apply (anti_symm _); eauto using pure_elim. Qed.
251

Ralf Jung's avatar
Ralf Jung committed
252
Lemma pure_and φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
253
254
255
256
257
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[??]; auto.
  - eapply (pure_elim φ1); [auto|]=> ?. eapply (pure_elim φ2); auto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
258
Lemma pure_or φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
259
260
261
262
263
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[?|?]; auto.
  - apply or_elim; eapply pure_elim; eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
264
Lemma pure_impl φ1 φ2 : ⌜φ1  φ2  (⌜φ1  ⌜φ2).
265
266
267
268
Proof.
  apply (anti_symm _).
  - apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver.
  - rewrite -pure_forall_2. apply forall_intro=> ?.
269
    by rewrite -(left_id True uPred_and (_→_))%I (pure_True φ1) // impl_elim_r.
270
Qed.
Ralf Jung's avatar
Ralf Jung committed
271
Lemma pure_forall {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
272
273
274
275
Proof.
  apply (anti_symm _); auto using pure_forall_2.
  apply forall_intro=> x. eauto using pure_mono.
Qed.
Ralf Jung's avatar
Ralf Jung committed
276
Lemma pure_exist {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
277
278
279
280
281
282
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[x ?]. rewrite -(exist_intro x); auto.
  - apply exist_elim=> x. eauto using pure_mono.
Qed.

283
Lemma internal_eq_refl' {A : ofeT} (a : A) P : P  a  a.
284
285
Proof. rewrite (True_intro P). apply internal_eq_refl. Qed.
Hint Resolve internal_eq_refl'.
286
Lemma equiv_internal_eq {A : ofeT} P (a b : A) : a  b  P  a  b.
287
Proof. by intros ->. Qed.
288
Lemma internal_eq_sym {A : ofeT} (a b : A) : a  b  b  a.
289
Proof. apply (internal_eq_rewrite a b (λ b, b  a)%I); auto. solve_proper. Qed.
290

Ralf Jung's avatar
Ralf Jung committed
291
Lemma pure_impl_forall φ P : (⌜φ⌝  P)  ( _ : φ, P).
292
293
Proof.
  apply (anti_symm _).
294
  - apply forall_intro=> ?. by rewrite pure_True // left_id.
295
296
  - apply impl_intro_l, pure_elim_l=> Hφ. by rewrite (forall_elim Hφ).
Qed.
Ralf Jung's avatar
Ralf Jung committed
297
Lemma pure_alt φ : ⌜φ⌝   _ : φ, True.
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
Proof.
  apply (anti_symm _).
  - eapply pure_elim; eauto=> H. rewrite -(exist_intro H); auto.
  - by apply exist_elim, pure_intro.
Qed.
Lemma and_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); first apply forall_intro=> -[]; auto.
  apply and_intro. by rewrite (forall_elim true). by rewrite (forall_elim false).
Qed.
Lemma or_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); last apply exist_elim=> -[]; auto.
  apply or_elim. by rewrite -(exist_intro true). by rewrite -(exist_intro false).
Qed.

Global Instance iff_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_iff M).
Proof. unfold uPred_iff; solve_proper. Qed.
Global Instance iff_proper :
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.

Lemma iff_refl Q P : Q  P  P.
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.
321
Lemma iff_equiv P Q : (P  Q)%I  (P  Q).
322
323
Proof.
  intros HPQ; apply (anti_symm ());
324
    apply impl_entails; rewrite /uPred_valid HPQ /uPred_iff; auto.
325
Qed.
326
Lemma equiv_iff P Q : (P  Q)  (P  Q)%I.
327
Proof. intros ->; apply iff_refl. Qed.
328
Lemma internal_eq_iff P Q : P  Q  P  Q.
329
Proof.
330
331
  apply (internal_eq_rewrite P Q (λ Q, P  Q))%I;
    first solve_proper; auto using iff_refl.
332
333
334
335
Qed.

(* Derived BI Stuff *)
Hint Resolve sep_mono.
336
Lemma sep_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
337
Proof. by intros; apply sep_mono. Qed.
338
Lemma sep_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
339
340
341
342
343
344
Proof. by apply sep_mono. Qed.
Global Instance sep_mono' : Proper (() ==> () ==> ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Global Instance sep_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
345
Lemma wand_mono P P' Q Q' : (Q  P)  (P'  Q')  (P - P')  Q - Q'.
346
347
348
349
350
Proof.
  intros HP HQ; apply wand_intro_r. rewrite HP -HQ. by apply wand_elim_l'.
Qed.
Global Instance wand_mono' : Proper (flip () ==> () ==> ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
351
352
353
Global Instance wand_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
354
355
356
357
358
359
360
361
362
363
364
365

Global Instance sep_comm : Comm () (@uPred_sep M).
Proof. intros P Q; apply (anti_symm _); auto using sep_comm'. Qed.
Global Instance sep_assoc : Assoc () (@uPred_sep M).
Proof.
  intros P Q R; apply (anti_symm _); auto using sep_assoc'.
  by rewrite !(comm _ P) !(comm _ _ R) sep_assoc'.
Qed.
Global Instance True_sep : LeftId () True%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto using True_sep_1, True_sep_2. Qed.
Global Instance sep_True : RightId () True%I (@uPred_sep M).
Proof. by intros P; rewrite comm left_id. Qed.
366
Lemma sep_elim_l P Q : P  Q  P.
367
Proof. by rewrite (True_intro Q) right_id. Qed.
368
369
370
Lemma sep_elim_r P Q : P  Q  Q.
Proof. by rewrite (comm ())%I; apply sep_elim_l. Qed.
Lemma sep_elim_l' P Q R : (P  R)  P  Q  R.
371
Proof. intros ->; apply sep_elim_l. Qed.
372
Lemma sep_elim_r' P Q R : (Q  R)  P  Q  R.
373
374
Proof. intros ->; apply sep_elim_r. Qed.
Hint Resolve sep_elim_l' sep_elim_r'.
375
Lemma sep_intro_True_l P Q R : P%I  (R  Q)  R  P  Q.
376
Proof. by intros; rewrite -(left_id True%I uPred_sep R); apply sep_mono. Qed.
377
Lemma sep_intro_True_r P Q R : (R  P)  Q%I  R  P  Q.
378
Proof. by intros; rewrite -(right_id True%I uPred_sep R); apply sep_mono. Qed.
379
Lemma sep_elim_True_l P Q R : P  (P  R  Q)  R  Q.
380
Proof. by intros HP; rewrite -HP left_id. Qed.
381
Lemma sep_elim_True_r P Q R : P  (R  P  Q)  R  Q.
382
Proof. by intros HP; rewrite -HP right_id. Qed.
383
Lemma wand_intro_l P Q R : (Q  P  R)  P  Q - R.
384
Proof. rewrite comm; apply wand_intro_r. Qed.
385
Lemma wand_elim_l P Q : (P - Q)  P  Q.
386
Proof. by apply wand_elim_l'. Qed.
387
Lemma wand_elim_r P Q : P  (P - Q)  Q.
388
Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
389
Lemma wand_elim_r' P Q R : (Q  P - R)  P  Q  R.
390
Proof. intros ->; apply wand_elim_r. Qed.
391
Lemma wand_apply P Q R S : (P  Q - R)  (S  P  Q)  S  R.
Ralf Jung's avatar
Ralf Jung committed
392
Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
393
Lemma wand_frame_l P Q R : (Q - R)  P  Q - P  R.
394
Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
395
Lemma wand_frame_r P Q R : (Q - R)  Q  P - R  P.
396
Proof.
397
  apply wand_intro_l. rewrite ![(_  P)%I]comm -assoc.
398
399
  apply sep_mono_r, wand_elim_r.
Qed.
400
Lemma wand_diag P : (P - P)  True.
401
Proof. apply (anti_symm _); auto. apply wand_intro_l; by rewrite right_id. Qed.
402
Lemma wand_True P : (True - P)  P.
403
404
Proof.
  apply (anti_symm _); last by auto using wand_intro_l.
405
  eapply sep_elim_True_l; last by apply wand_elim_r. done.
406
Qed.
407
Lemma wand_entails P Q : (P - Q)%I  P  Q.
408
409
410
Proof.
  intros HPQ. eapply sep_elim_True_r; first exact: HPQ. by rewrite wand_elim_r.
Qed.
411
412
Lemma entails_wand P Q : (P  Q)  (P - Q)%I.
Proof. intro. apply wand_intro_l. auto. Qed.
413
Lemma wand_curry P Q R : (P - Q - R)  (P  Q - R).
414
415
416
417
418
419
Proof.
  apply (anti_symm _).
  - apply wand_intro_l. by rewrite (comm _ P) -assoc !wand_elim_r.
  - do 2 apply wand_intro_l. by rewrite assoc (comm _ Q) wand_elim_r.
Qed.

420
Lemma sep_and P Q : (P  Q)  (P  Q).
421
Proof. auto. Qed.
422
Lemma impl_wand P Q : (P  Q)  P - Q.
423
Proof. apply wand_intro_r, impl_elim with P; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
424
Lemma pure_elim_sep_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
425
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
426
Lemma pure_elim_sep_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
427
428
429
430
431
432
433
Proof. intros; apply pure_elim with φ; eauto. Qed.

Global Instance sep_False : LeftAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.
Global Instance False_sep : RightAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.

434
Lemma sep_and_l P Q R : P  (Q  R)  (P  Q)  (P  R).
435
Proof. auto. Qed.
436
Lemma sep_and_r P Q R : (P  Q)  R  (P  R)  (Q  R).
437
Proof. auto. Qed.
438
Lemma sep_or_l P Q R : P  (Q  R)  (P  Q)  (P  R).
439
440
441
442
Proof.
  apply (anti_symm ()); last by eauto 8.
  apply wand_elim_r', or_elim; apply wand_intro_l; auto.
Qed.
443
Lemma sep_or_r P Q R : (P  Q)  R  (P  R)  (Q  R).
444
Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
445
Lemma sep_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
446
447
448
449
450
451
Proof.
  intros; apply (anti_symm ()).
  - apply wand_elim_r', exist_elim=>a. apply wand_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=> a; apply sep_mono; auto using exist_intro.
Qed.
452
Lemma sep_exist_r {A} (Φ: A  uPred M) Q: ( a, Φ a)  Q   a, Φ a  Q.
453
Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
454
Lemma sep_forall_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
455
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.
456
Lemma sep_forall_r {A} (Φ : A  uPred M) Q : ( a, Φ a)  Q   a, Φ a  Q.
457
458
459
460
461
462
463
464
465
466
467
468
469
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.

(* Always derived *)
Hint Resolve always_mono always_elim.
Global Instance always_mono' : Proper (() ==> ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.
Global Instance always_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.

Lemma always_intro' P Q : ( P  Q)   P   Q.
Proof. intros <-. apply always_idemp. Qed.

Ralf Jung's avatar
Ralf Jung committed
470
Lemma always_pure φ :  ⌜φ⌝  ⌜φ⌝.
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
Proof. apply (anti_symm _); auto using always_pure_2. Qed.
Lemma always_forall {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma always_exist {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_exist_1.
  apply exist_elim=> x. by rewrite (exist_intro x).
Qed.
Lemma always_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt always_forall. by apply forall_proper=> -[]. Qed.
Lemma always_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt always_exist. by apply exist_proper=> -[]. Qed.
Lemma always_impl P Q :  (P  Q)   P   Q.
Proof.
  apply impl_intro_l; rewrite -always_and.
  apply always_mono, impl_elim with P; auto.
Qed.
491
Lemma always_internal_eq {A:ofeT} (a b : A) :  (a  b)  a  b.
492
493
Proof.
  apply (anti_symm ()); auto using always_elim.
494
  apply (internal_eq_rewrite a b (λ b,  (a  b))%I); auto.
495
  { intros n; solve_proper. }
496
  rewrite -(internal_eq_refl a) always_pure; auto.
497
498
Qed.

499
Lemma always_and_sep P Q :  (P  Q)   (P  Q).
500
Proof. apply (anti_symm ()); auto using always_and_sep_1. Qed.
501
Lemma always_and_sep_l' P Q :  P  Q   P  Q.
502
Proof. apply (anti_symm ()); auto using always_and_sep_l_1. Qed.
503
Lemma always_and_sep_r' P Q : P   Q  P   Q.
504
Proof. by rewrite !(comm _ P) always_and_sep_l'. Qed.
505
Lemma always_sep P Q :  (P  Q)   P   Q.
506
Proof. by rewrite -always_and_sep -always_and_sep_l' always_and. Qed.
507
Lemma always_sep_dup' P :  P   P   P.
508
509
Proof. by rewrite -always_sep -always_and_sep (idemp _). Qed.

510
Lemma always_wand P Q :  (P - Q)   P -  Q.
511
Proof. by apply wand_intro_r; rewrite -always_sep wand_elim_l. Qed.
512
Lemma always_wand_impl P Q :  (P - Q)   (P  Q).
513
514
515
516
517
Proof.
  apply (anti_symm ()); [|by rewrite -impl_wand].
  apply always_intro', impl_intro_r.
  by rewrite always_and_sep_l' always_elim wand_elim_l.
Qed.
518
Lemma always_entails_l' P Q : (P   Q)  P   Q  P.
519
Proof. intros; rewrite -always_and_sep_l'; auto. Qed.
520
Lemma always_entails_r' P Q : (P   Q)  P  P   Q.
521
522
Proof. intros; rewrite -always_and_sep_r'; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
523
524
525
526
Lemma always_laterN n P :  ^n P  ^n  P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite always_later IH. Qed.


527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
(* Later derived *)
Lemma later_proper P Q : (P  Q)   P   Q.
Proof. by intros ->. Qed.
Hint Resolve later_mono later_proper.
Global Instance later_mono' : Proper (() ==> ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.
Global Instance later_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.

Lemma later_intro P : P   P.
Proof.
  rewrite -(and_elim_l ( P) P) -(löb ( P  P)).
  apply impl_intro_l. by rewrite {1}(and_elim_r ( P)).
Qed.

Lemma later_True :  True  True.
Proof. apply (anti_symm ()); auto using later_intro. Qed.
Lemma later_forall {A} (Φ : A  uPred M) : (  a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); auto using later_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma later_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
  apply: anti_symm; [|apply exist_elim; eauto using exist_intro].
  rewrite later_exist_false. apply or_elim; last done.
  rewrite -(exist_intro inhabitant); auto.
Qed.
Lemma later_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt later_forall. by apply forall_proper=> -[]. Qed.
Lemma later_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt later_exist. by apply exist_proper=> -[]. Qed.
Lemma later_impl P Q :  (P  Q)   P   Q.
Proof. apply impl_intro_l; rewrite -later_and; eauto using impl_elim. Qed.
563
Lemma later_wand P Q :  (P - Q)   P -  Q.
564
565
566
567
568
Proof. apply wand_intro_r; rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma later_iff P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.


Robbert Krebbers's avatar
Robbert Krebbers committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
(* Iterated later modality *)
Global Instance laterN_ne n m : Proper (dist n ==> dist n) (@uPred_laterN M m).
Proof. induction m; simpl. by intros ???. solve_proper. Qed.
Global Instance laterN_proper m :
  Proper (() ==> ()) (@uPred_laterN M m) := ne_proper _.

Lemma laterN_0 P : ^0 P  P.
Proof. done. Qed.
Lemma later_laterN n P : ^(S n) P   ^n P.
Proof. done. Qed.
Lemma laterN_later n P : ^(S n) P  ^n  P.
Proof. induction n; simpl; auto. Qed.
Lemma laterN_plus n1 n2 P : ^(n1 + n2) P  ^n1 ^n2 P.
Proof. induction n1; simpl; auto. Qed.
Lemma laterN_le n1 n2 P : n1  n2  ^n1 P  ^n2 P.
Proof. induction 1; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_mono n P Q : (P  Q)  ^n P  ^n Q.
Proof. induction n; simpl; auto. Qed.
Global Instance laterN_mono' n : Proper (() ==> ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Global Instance laterN_flip_mono' n :
  Proper (flip () ==> flip ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.

Lemma laterN_intro n P : P  ^n P.
Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_True n : ^n True  True.
Proof. apply (anti_symm ()); auto using laterN_intro. Qed.
Lemma laterN_forall {A} n (Φ : A  uPred M) : (^n  a, Φ a)  ( a, ^n Φ a).
Proof. induction n as [|n IH]; simpl; rewrite -?later_forall; auto. Qed.
Lemma laterN_exist `{Inhabited A} n (Φ : A  uPred M) :
  (^n  a, Φ a)   a, ^n Φ a.
Proof. induction n as [|n IH]; simpl; rewrite -?later_exist; auto. Qed.
Lemma laterN_and n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_and; auto. Qed.
Lemma laterN_or n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_or; auto. Qed.
Lemma laterN_impl n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof.
  apply impl_intro_l; rewrite -laterN_and; eauto using impl_elim, laterN_mono.
Qed.
Lemma laterN_sep n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_sep; auto. Qed.
Lemma laterN_wand n P Q : ^n (P - Q)  ^n P - ^n Q.
Proof.
  apply wand_intro_r; rewrite -laterN_sep; eauto using wand_elim_l,laterN_mono.
Qed.
Lemma laterN_iff n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. by rewrite /uPred_iff laterN_and !laterN_impl. Qed.

621
622
623
624
625
626
627
628
629
630
631
632
633
(* Conditional always *)
Global Instance always_if_ne n p : Proper (dist n ==> dist n) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_proper p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_mono p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.

Lemma always_if_elim p P : ?p P  P.
Proof. destruct p; simpl; auto using always_elim. Qed.
Lemma always_elim_if p P :  P  ?p P.
Proof. destruct p; simpl; auto using always_elim. Qed.

Ralf Jung's avatar
Ralf Jung committed
634
Lemma always_if_pure p φ : ?p ⌜φ⌝  ⌜φ⌝.
635
636
637
638
639
640
641
Proof. destruct p; simpl; auto using always_pure. Qed.
Lemma always_if_and p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_and. Qed.
Lemma always_if_or p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_or. Qed.
Lemma always_if_exist {A} p (Ψ : A  uPred M) : (?p  a, Ψ a)   a, ?p Ψ a.
Proof. destruct p; simpl; auto using always_exist. Qed.
642
Lemma always_if_sep p P Q : ?p (P  Q)  ?p P  ?p Q.
643
644
645
646
647
648
Proof. destruct p; simpl; auto using always_sep. Qed.
Lemma always_if_later p P : ?p  P   ?p P.
Proof. destruct p; simpl; auto using always_later. Qed.


(* True now *)
649
Global Instance except_0_ne n : Proper (dist n ==> dist n) (@uPred_except_0 M).
650
Proof. solve_proper. Qed.
651
Global Instance except_0_proper : Proper (() ==> ()) (@uPred_except_0 M).
652
Proof. solve_proper. Qed.
653
Global Instance except_0_mono' : Proper (() ==> ()) (@uPred_except_0 M).
654
Proof. solve_proper. Qed.
655
656
Global Instance except_0_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_except_0 M).
657
658
Proof. solve_proper. Qed.

659
660
661
Lemma except_0_intro P : P   P.
Proof. rewrite /uPred_except_0; auto. Qed.
Lemma except_0_mono P Q : (P  Q)   P   Q.
662
Proof. by intros ->. Qed.
663
664
665
666
667
668
669
670
671
Lemma except_0_idemp P :   P   P.
Proof. rewrite /uPred_except_0; auto. Qed.

Lemma except_0_True :  True  True.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_or P Q :  (P  Q)   P   Q.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_and P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_except_0 or_and_l. Qed.
672
Lemma except_0_sep P Q :  (P  Q)   P   Q.
673
674
Proof.
  rewrite /uPred_except_0. apply (anti_symm _).
675
676
677
678
  - apply or_elim; last by auto.
    by rewrite -!or_intro_l -always_pure -always_later -always_sep_dup'.
  - rewrite sep_or_r sep_elim_l sep_or_l; auto.
Qed.
679
Lemma except_0_forall {A} (Φ : A  uPred M) :  ( a, Φ a)   a,  Φ a.
680
Proof. apply forall_intro=> a. by rewrite (forall_elim a). Qed.
681
Lemma except_0_exist {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
682
Proof. apply exist_elim=> a. by rewrite (exist_intro a). Qed.
683
684
685
686
687
688
Lemma except_0_later P :   P   P.
Proof. by rewrite /uPred_except_0 -later_or False_or. Qed.
Lemma except_0_always P :   P    P.
Proof. by rewrite /uPred_except_0 always_or always_later always_pure. Qed.
Lemma except_0_always_if p P :  ?p P  ?p  P.
Proof. destruct p; simpl; auto using except_0_always. Qed.
689
Lemma except_0_frame_l P Q : P   Q   (P  Q).
690
Proof. by rewrite {1}(except_0_intro P) except_0_sep. Qed.
691
Lemma except_0_frame_r P Q :  P  Q   (P  Q).
692
Proof. by rewrite {1}(except_0_intro Q) except_0_sep. Qed.
693
694
695
696
697
698
699
700
701
702
703
704

(* Own and valid derived *)
Lemma always_ownM (a : M) : Persistent a   uPred_ownM a  uPred_ownM a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  by rewrite {1}always_ownM_core persistent_core.
Qed.
Lemma ownM_invalid (a : M) : ¬ {0} a  uPred_ownM a  False.
Proof. by intros; rewrite ownM_valid cmra_valid_elim. Qed.
Global Instance ownM_mono : Proper (flip () ==> ()) (@uPred_ownM M).
Proof. intros a b [b' ->]. rewrite ownM_op. eauto. Qed.
Lemma ownM_empty' : uPred_ownM   True.
705
Proof. apply (anti_symm _); first by auto. apply ownM_empty. Qed.
706
707
708
709
710
711
712
713
714
715
716
Lemma always_cmra_valid {A : cmraT} (a : A) :   a   a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  apply:always_cmra_valid_1.
Qed.

(** * Derived rules *)
Global Instance bupd_mono' : Proper (() ==> ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
Global Instance bupd_flip_mono' : Proper (flip () ==> flip ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
717
Lemma bupd_frame_l R Q : (R  |==> Q) == R  Q.
718
Proof. rewrite !(comm _ R); apply bupd_frame_r. Qed.
719
Lemma bupd_wand_l P Q : (P - Q)  (|==> P) == Q.
720
Proof. by rewrite bupd_frame_l wand_elim_l. Qed.
721
Lemma bupd_wand_r P Q : (|==> P)  (P - Q) == Q.
722
Proof. by rewrite bupd_frame_r wand_elim_r. Qed.
723
Lemma bupd_sep P Q : (|==> P)  (|==> Q) == P  Q.
724
725
726
727
728
729
Proof. by rewrite bupd_frame_r bupd_frame_l bupd_trans. Qed.
Lemma bupd_ownM_update x y : x ~~> y  uPred_ownM x  |==> uPred_ownM y.
Proof.
  intros; rewrite (bupd_ownM_updateP _ (y =)); last by apply cmra_update_updateP.
  by apply bupd_mono, exist_elim=> y'; apply pure_elim_l=> ->.
Qed.
730
Lemma except_0_bupd P :  (|==> P)  (|==>  P).
731
Proof.
732
  rewrite /uPred_except_0. apply or_elim; auto using bupd_mono.
733
734
735
736
  by rewrite -bupd_intro -or_intro_l.
Qed.

(* Timeless instances *)
Ralf Jung's avatar
Ralf Jung committed
737
Global Instance pure_timeless φ : TimelessP (⌜φ⌝ : uPred M)%I.
738
739
740
741
742
743
744
Proof.
  rewrite /TimelessP pure_alt later_exist_false. by setoid_rewrite later_True.
Qed.
Global Instance valid_timeless {A : cmraT} `{CMRADiscrete A} (a : A) :
  TimelessP ( a : uPred M)%I.
Proof. rewrite /TimelessP !discrete_valid. apply (timelessP _). Qed.
Global Instance and_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
745
Proof. intros; rewrite /TimelessP except_0_and later_and; auto. Qed.
746
Global Instance or_timeless P Q : TimelessP P  TimelessP Q  TimelessP (P  Q).
747
Proof. intros; rewrite /TimelessP except_0_or later_or; auto. Qed.
748
749
750
751
752
Global Instance impl_timeless P Q : TimelessP Q  TimelessP (P  Q).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, impl_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
753
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
754
755
  by rewrite assoc (comm _ _ P) -assoc !impl_elim_r.
Qed.
756
Global Instance sep_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
757
Proof. intros; rewrite /TimelessP except_0_sep later_sep; auto. Qed.
758
Global Instance wand_timeless P Q : TimelessP Q  TimelessP (P - Q).
759
760
761
762
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, wand_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
763
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
764
765
766
767
768
769
770
771
772
  rewrite -(always_pure) -always_later always_and_sep_l'.
  by rewrite assoc (comm _ _ P) -assoc -always_and_sep_l' impl_elim_r wand_elim_r.
Qed.
Global Instance forall_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono; first done. apply forall_intro=> x.
  rewrite -(löb (Ψ x)); apply impl_intro_l.
773
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
774
775
776
777
778
779
  by rewrite impl_elim_r (forall_elim x).
Qed.
Global Instance exist_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> ?. rewrite later_exist_false. apply or_elim.
780
  - rewrite /uPred_except_0; auto.
781
782
783
  - apply exist_elim=> x. rewrite -(exist_intro x); auto.
Qed.
Global Instance always_timeless P : TimelessP P  TimelessP ( P).
784
Proof. intros; rewrite /TimelessP except_0_always -always_later; auto. Qed.
785
786
Global Instance always_if_timeless p P : TimelessP P  TimelessP (?p P).
Proof. destruct p; apply _. Qed.
787
Global Instance eq_timeless {A : ofeT} (a b : A) :
788
789
790
791
792
  Timeless a  TimelessP (a  b : uPred M)%I.
Proof. intros. rewrite /TimelessP !timeless_eq. apply (timelessP _). Qed.
Global Instance ownM_timeless (a : M) : Timeless a  TimelessP (uPred_ownM a).
Proof.
  intros ?. rewrite /TimelessP later_ownM. apply exist_elim=> b.
793
  rewrite (timelessP (ab)) (except_0_intro (uPred_ownM b)) -except_0_and.
794
795
  apply except_0_mono. rewrite internal_eq_sym.
  apply (internal_eq_rewrite b a (uPred_ownM)); first apply _; auto.
796
Qed.
797
798
799
Global Instance from_option_timeless {A} P (Ψ : A  uPred M) (mx : option A) :
  ( x, TimelessP (Ψ x))  TimelessP P  TimelessP (from_option Ψ P mx).
Proof. destruct mx; apply _. Qed.
800
801

(* Persistence *)
Ralf Jung's avatar
Ralf Jung committed
802
Global Instance pure_persistent φ : PersistentP (⌜φ⌝ : uPred M)%I.
803
804
805
806
807
808
809
810
811
812
Proof. by rewrite /PersistentP always_pure. Qed.
Global Instance always_persistent P : PersistentP ( P).
Proof. by intros; apply always_intro'. Qed.
Global Instance and_persistent P Q :
  PersistentP P  PersistentP Q  PersistentP (P  Q).
Proof. by intros; rewrite /PersistentP always_and; apply and_mono. Qed.
Global Instance or_persistent P Q :
  PersistentP P  PersistentP Q  PersistentP (P  Q).
Proof. by intros; rewrite /PersistentP always_or; apply or_mono. Qed.
Global Instance sep_persistent P Q :
813
  PersistentP P  PersistentP Q  PersistentP (P  Q).
814
815
816
817
818
819
820
Proof. by intros; rewrite /PersistentP always_sep; apply sep_mono. Qed.
Global Instance forall_persistent {A} (Ψ : A  uPred M) :
  ( x, PersistentP (Ψ x))  PersistentP ( x, Ψ x).
Proof. by intros; rewrite /PersistentP always_forall; apply forall_mono. Qed.
Global Instance exist_persistent {A} (Ψ : A  uPred M) :
  ( x, PersistentP (Ψ x))  PersistentP ( x, Ψ x).
Proof. by intros; rewrite /PersistentP always_exist; apply exist_mono. Qed.
821
Global Instance internal_eq_persistent {A : ofeT} (a b : A) :
822
  PersistentP (a  b : uPred M)%I.
823
Proof. by intros; rewrite /PersistentP always_internal_eq. Qed.
824
825
826
827
828
Global Instance cmra_valid_persistent {A : cmraT} (a : A) :
  PersistentP ( a : uPred M)%I.
Proof. by intros; rewrite /PersistentP always_cmra_valid. Qed.
Global Instance later_persistent P : PersistentP P  PersistentP ( P).
Proof. by intros; rewrite /PersistentP always_later; apply later_mono. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
829
830
Global Instance laterN_persistent n P : PersistentP P  PersistentP (^n P).
Proof. induction n; apply _. Qed.
831
832
833
834
835
836
837
838
839
840
841
842
843
Global Instance ownM_persistent : Persistent a  PersistentP (@uPred_ownM M a).
Proof. intros. by rewrite /PersistentP always_ownM. Qed.
Global Instance from_option_persistent {A} P (Ψ : A  uPred M) (mx : option A) :
  ( x, PersistentP (Ψ x))  PersistentP P  PersistentP (from_option Ψ P mx).
Proof. destruct mx; apply _. Qed.

(* Derived lemmas for persistence *)
Lemma always_always P `{!PersistentP P} :  P  P.
Proof. apply (anti_symm ()); auto using always_elim. Qed.
Lemma always_if_always p P `{!PersistentP P} : ?p P  P.
Proof. destruct p; simpl; auto using always_always. Qed.
Lemma always_intro P Q `{!PersistentP P} : (P  Q)  P   Q.
Proof. rewrite -(always_always P); apply always_intro'. Qed.
844
Lemma always_and_sep_l P Q `{!PersistentP P} : P  Q  P  Q.
845
Proof. by rewrite -(always_always P) always_and_sep_l'. Qed.
846
Lemma always_and_sep_r P Q `{!PersistentP Q} : P  Q  P  Q.
847
Proof. by rewrite -(always_always Q) always_and_sep_r'. Qed.
848
Lemma always_sep_dup P `{!PersistentP P} : P  P  P.
849
Proof. by rewrite -(always_always P) -always_sep_dup'. Qed.
850
Lemma always_entails_l P Q `{!PersistentP Q} : (P  Q)  P  Q  P.
851
Proof. by rewrite -(always_always Q); apply always_entails_l'. Qed.
852
Lemma always_entails_r P Q `{!PersistentP Q} : (P  Q)  P  P  Q.
853
854
Proof. by rewrite -(always_always Q); apply always_entails_r'. Qed.
End derived.
855