derived.v 44.9 KB
Newer Older
1
From iris.base_logic Require Export primitive.
2
Set Default Proof Using "Type".
3
Import upred.uPred primitive.uPred.
4
5
6
7
8

Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Instance: Params (@uPred_iff) 1.
Infix "↔" := uPred_iff : uPred_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
9
10
11
12
13
14
15
16
17
18
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
  Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
  (at level 20, n at level 9, P at level 20,
   format "▷^ n  P") : uPred_scope.
Notation "▷? p P" := (uPred_laterN (Nat.b2n p) P)
  (at level 20, p at level 9, P at level 20,
   format "▷? p  P") : uPred_scope.

19
20
21
22
23
Definition uPred_always_if {M} (p : bool) (P : uPred M) : uPred M :=
  (if p then  P else P)%I.
Instance: Params (@uPred_always_if) 2.
Arguments uPred_always_if _ !_ _/.
Notation "□? p P" := (uPred_always_if p P)
Robbert Krebbers's avatar
Robbert Krebbers committed
24
  (at level 20, p at level 9, P at level 20, format "□? p  P").
25

26
27
Definition uPred_except_0 {M} (P : uPred M) : uPred M :=  False  P.
Notation "◇ P" := (uPred_except_0 P)
28
  (at level 20, right associativity) : uPred_scope.
29
30
Instance: Params (@uPred_except_0) 1.
Typeclasses Opaque uPred_except_0.
31
32
33

Class TimelessP {M} (P : uPred M) := timelessP :  P   P.
Arguments timelessP {_} _ {_}.
34
Hint Mode TimelessP + ! : typeclass_instances.
35
Instance: Params (@TimelessP) 1.
36
37
38

Class PersistentP {M} (P : uPred M) := persistentP : P   P.
Arguments persistentP {_} _ {_}.
39
Hint Mode PersistentP + ! : typeclass_instances.
40
Instance: Params (@PersistentP) 1.
41

42
Module uPred.
43
44
45
46
47
48
49
50
51
52
Section derived.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)

(* Derived logical stuff *)
Lemma False_elim P : False  P.
53
Proof. by apply (pure_elim' False). Qed.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Lemma True_intro P : P  True.
Proof. by apply pure_intro. Qed.

Lemma and_elim_l' P Q R : (P  R)  P  Q  R.
Proof. by rewrite and_elim_l. Qed.
Lemma and_elim_r' P Q R : (Q  R)  P  Q  R.
Proof. by rewrite and_elim_r. Qed.
Lemma or_intro_l' P Q R : (P  Q)  P  Q  R.
Proof. intros ->; apply or_intro_l. Qed.
Lemma or_intro_r' P Q R : (P  R)  P  Q  R.
Proof. intros ->; apply or_intro_r. Qed.
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : (P  Ψ a)  P   a, Ψ a.
Proof. intros ->; apply exist_intro. Qed.
Lemma forall_elim' {A} P (Ψ : A  uPred M) : (P   a, Ψ a)   a, P  Ψ a.
Proof. move=> HP a. by rewrite HP forall_elim. Qed.

Hint Resolve pure_intro.
Hint Resolve or_elim or_intro_l' or_intro_r'.
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.

Lemma impl_intro_l P Q R : (Q  P  R)  P  Q  R.
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
Lemma impl_elim_l P Q : (P  Q)  P  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : P  (P  Q)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : (Q  P  R)  P  Q  R.
Proof. intros; apply impl_elim with P; auto. Qed.
85
Lemma impl_entails P Q : (P  Q)%I  P  Q.
86
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
87
88
Lemma entails_impl P Q : (P  Q)  (P  Q)%I.
Proof. intro. apply impl_intro_l. auto. Qed.
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

Lemma and_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma and_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply and_mono. Qed.

Lemma or_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. auto. Qed.
Lemma or_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
Proof. by apply or_mono. Qed.

Lemma impl_mono P P' Q Q' : (Q  P)  (P'  Q')  (P  P')  Q  Q'.
Proof.
  intros HP HQ'; apply impl_intro_l; rewrite -HQ'.
  apply impl_elim with P; eauto.
Qed.
Lemma forall_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof.
  intros HP. apply forall_intro=> a; rewrite -(HP a); apply forall_elim.
Qed.
Lemma exist_mono {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)   a, Ψ a.
Proof. intros HΦ. apply exist_elim=> a; rewrite (HΦ a); apply exist_intro. Qed.

Global Instance and_mono' : Proper (() ==> () ==> ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance and_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_and M).
Proof. by intros P P' HP Q Q' HQ; apply and_mono. Qed.
Global Instance or_mono' : Proper (() ==> () ==> ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance or_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_or M).
Proof. by intros P P' HP Q Q' HQ; apply or_mono. Qed.
Global Instance impl_mono' :
  Proper (flip () ==> () ==> ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
131
132
133
Global Instance impl_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_impl M).
Proof. by intros P P' HP Q Q' HQ; apply impl_mono. Qed.
134
135
136
Global Instance forall_mono' A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
137
138
139
Global Instance forall_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_forall M A).
Proof. intros P1 P2; apply forall_mono. Qed.
140
Global Instance exist_mono' A :
141
142
143
144
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
Proof. intros P1 P2; apply exist_mono. Qed.
Global Instance exist_flip_mono' A :
  Proper (pointwise_relation _ (flip ()) ==> flip ()) (@uPred_exist M A).
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Proof. intros P1 P2; apply exist_mono. Qed.

Global Instance and_idem : IdemP () (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_idem : IdemP () (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_comm : Comm () (@uPred_and M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance True_and : LeftId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_True : RightId () True%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_and : LeftAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_False : RightAbsorb () False%I (@uPred_and M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance True_or : LeftAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_True : RightAbsorb () True%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance False_or : LeftId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance or_False : RightId () False%I (@uPred_or M).
Proof. intros P; apply (anti_symm ()); auto. Qed.
Global Instance and_assoc : Assoc () (@uPred_and M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance or_comm : Comm () (@uPred_or M).
Proof. intros P Q; apply (anti_symm ()); auto. Qed.
Global Instance or_assoc : Assoc () (@uPred_or M).
Proof. intros P Q R; apply (anti_symm ()); auto. Qed.
Global Instance True_impl : LeftId () True%I (@uPred_impl M).
Proof.
  intros P; apply (anti_symm ()).
  - by rewrite -(left_id True%I uPred_and (_  _)%I) impl_elim_r.
  - by apply impl_intro_l; rewrite left_id.
Qed.
181
182
183
184
185
Lemma False_impl P : (False  P)  True.
Proof.
  apply (anti_symm ()); [by auto|].
  apply impl_intro_l. rewrite left_absorb. auto.
Qed.
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

Lemma exists_impl_forall {A} P (Ψ : A  uPred M) :
  (( x : A, Ψ x)  P)   x : A, Ψ x  P.
Proof.
  apply equiv_spec; split.
  - apply forall_intro=>x. by rewrite -exist_intro.
  - apply impl_intro_r, impl_elim_r', exist_elim=>x.
    apply impl_intro_r. by rewrite (forall_elim x) impl_elim_r.
Qed.

Lemma or_and_l P Q R : P  Q  R  (P  Q)  (P  R).
Proof.
  apply (anti_symm ()); first auto.
  do 2 (apply impl_elim_l', or_elim; apply impl_intro_l); auto.
Qed.
Lemma or_and_r P Q R : P  Q  R  (P  R)  (Q  R).
Proof. by rewrite -!(comm _ R) or_and_l. Qed.
Lemma and_or_l P Q R : P  (Q  R)  P  Q  P  R.
Proof.
  apply (anti_symm ()); last auto.
  apply impl_elim_r', or_elim; apply impl_intro_l; auto.
Qed.
Lemma and_or_r P Q R : (P  Q)  R  P  R  Q  R.
Proof. by rewrite -!(comm _ R) and_or_l. Qed.
Lemma and_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
Proof.
  apply (anti_symm ()).
  - apply impl_elim_r'. apply exist_elim=>a. apply impl_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=>a. apply and_intro; first by rewrite and_elim_l.
    by rewrite -(exist_intro a) and_elim_r.
Qed.
Lemma and_exist_r {A} P (Φ: A  uPred M) : ( a, Φ a)  P   a, Φ a  P.
Proof.
  rewrite -(comm _ P) and_exist_l. apply exist_proper=>a. by rewrite comm.
Qed.
222
223
224
225
226
227
228
Lemma or_exist {A} (Φ Ψ : A  uPred M) :
  ( a, Φ a  Ψ a)  ( a, Φ a)  ( a, Ψ a).
Proof.
  apply (anti_symm ()).
  - apply exist_elim=> a. by rewrite -!(exist_intro a).
  - apply or_elim; apply exist_elim=> a; rewrite -(exist_intro a); auto.
Qed.
229

230
Lemma pure_elim φ Q R : (Q  ⌜φ⌝)  (φ  Q  R)  Q  R.
231
232
233
234
Proof.
  intros HQ HQR. rewrite -(idemp uPred_and Q) {1}HQ.
  apply impl_elim_l', pure_elim'=> ?. by apply entails_impl, HQR.
Qed.
Ralf Jung's avatar
Ralf Jung committed
235
Lemma pure_mono φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
236
237
238
Proof. intros; apply pure_elim with φ1; eauto. Qed.
Global Instance pure_mono' : Proper (impl ==> ()) (@uPred_pure M).
Proof. intros φ1 φ2; apply pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
239
Lemma pure_iff φ1 φ2 : (φ1  φ2)  ⌜φ1  ⌜φ2.
240
Proof. intros [??]; apply (anti_symm _); auto using pure_mono. Qed.
Ralf Jung's avatar
Ralf Jung committed
241
Lemma pure_intro_l φ Q R : φ  (⌜φ⌝  Q  R)  Q  R.
242
Proof. intros ? <-; auto using pure_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
243
Lemma pure_intro_r φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
244
Proof. intros ? <-; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
245
Lemma pure_intro_impl φ Q R : φ  (Q  ⌜φ⌝  R)  Q  R.
246
Proof. intros ? ->. eauto using pure_intro_l, impl_elim_r. Qed.
Ralf Jung's avatar
Ralf Jung committed
247
Lemma pure_elim_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
248
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
249
Lemma pure_elim_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
250
Proof. intros; apply pure_elim with φ; eauto. Qed.
251

Ralf Jung's avatar
Ralf Jung committed
252
Lemma pure_True (φ : Prop) : φ  ⌜φ⌝  True.
253
Proof. intros; apply (anti_symm _); auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
254
Lemma pure_False (φ : Prop) : ¬φ  ⌜φ⌝  False.
255
Proof. intros; apply (anti_symm _); eauto using pure_elim. Qed.
256

Ralf Jung's avatar
Ralf Jung committed
257
Lemma pure_and φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
258
259
260
261
262
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[??]; auto.
  - eapply (pure_elim φ1); [auto|]=> ?. eapply (pure_elim φ2); auto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
263
Lemma pure_or φ1 φ2 : ⌜φ1  φ2  ⌜φ1  ⌜φ2.
264
265
266
267
268
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[?|?]; auto.
  - apply or_elim; eapply pure_elim; eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
269
Lemma pure_impl φ1 φ2 : ⌜φ1  φ2  (⌜φ1  ⌜φ2).
270
271
272
273
Proof.
  apply (anti_symm _).
  - apply impl_intro_l. rewrite -pure_and. apply pure_mono. naive_solver.
  - rewrite -pure_forall_2. apply forall_intro=> ?.
274
    by rewrite -(left_id True uPred_and (_→_))%I (pure_True φ1) // impl_elim_r.
275
Qed.
Ralf Jung's avatar
Ralf Jung committed
276
Lemma pure_forall {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
277
278
279
280
Proof.
  apply (anti_symm _); auto using pure_forall_2.
  apply forall_intro=> x. eauto using pure_mono.
Qed.
Ralf Jung's avatar
Ralf Jung committed
281
Lemma pure_exist {A} (φ : A  Prop) :  x, φ x   x, ⌜φ x.
282
283
284
285
286
287
Proof.
  apply (anti_symm _).
  - eapply pure_elim=> // -[x ?]. rewrite -(exist_intro x); auto.
  - apply exist_elim=> x. eauto using pure_mono.
Qed.

288
Lemma internal_eq_refl' {A : ofeT} (a : A) P : P  a  a.
289
290
Proof. rewrite (True_intro P). apply internal_eq_refl. Qed.
Hint Resolve internal_eq_refl'.
291
Lemma equiv_internal_eq {A : ofeT} P (a b : A) : a  b  P  a  b.
292
Proof. by intros ->. Qed.
293
Lemma internal_eq_sym {A : ofeT} (a b : A) : a  b  b  a.
294
Proof. apply (internal_eq_rewrite a b (λ b, b  a)%I); auto. solve_proper. Qed.
295
296
297
Lemma internal_eq_rewrite_contractive {A : ofeT} a b (Ψ : A  uPred M) P
  {HΨ : Contractive Ψ} : (P   (a  b))  (P  Ψ a)  P  Ψ b.
Proof.
298
299
  move: HΨ=> /contractiveI HΨ Heq ?.
  apply (internal_eq_rewrite (Ψ a) (Ψ b) id _)=>//=. by rewrite -HΨ.
300
Qed.
301

Ralf Jung's avatar
Ralf Jung committed
302
Lemma pure_impl_forall φ P : (⌜φ⌝  P)  ( _ : φ, P).
303
304
Proof.
  apply (anti_symm _).
305
  - apply forall_intro=> ?. by rewrite pure_True // left_id.
306
307
  - apply impl_intro_l, pure_elim_l=> Hφ. by rewrite (forall_elim Hφ).
Qed.
Ralf Jung's avatar
Ralf Jung committed
308
Lemma pure_alt φ : ⌜φ⌝   _ : φ, True.
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
Proof.
  apply (anti_symm _).
  - eapply pure_elim; eauto=> H. rewrite -(exist_intro H); auto.
  - by apply exist_elim, pure_intro.
Qed.
Lemma and_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); first apply forall_intro=> -[]; auto.
  apply and_intro. by rewrite (forall_elim true). by rewrite (forall_elim false).
Qed.
Lemma or_alt P Q : P  Q   b : bool, if b then P else Q.
Proof.
  apply (anti_symm _); last apply exist_elim=> -[]; auto.
  apply or_elim. by rewrite -(exist_intro true). by rewrite -(exist_intro false).
Qed.

325
Global Instance iff_ne : NonExpansive2 (@uPred_iff M).
326
327
328
329
330
331
Proof. unfold uPred_iff; solve_proper. Qed.
Global Instance iff_proper :
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.

Lemma iff_refl Q P : Q  P  P.
Proof. rewrite /uPred_iff; apply and_intro; apply impl_intro_l; auto. Qed.
332
Lemma iff_equiv P Q : (P  Q)%I  (P  Q).
333
334
Proof.
  intros HPQ; apply (anti_symm ());
335
    apply impl_entails; rewrite /uPred_valid HPQ /uPred_iff; auto.
336
Qed.
337
Lemma equiv_iff P Q : (P  Q)  (P  Q)%I.
338
Proof. intros ->; apply iff_refl. Qed.
339
Lemma internal_eq_iff P Q : P  Q  P  Q.
340
Proof.
341
342
  apply (internal_eq_rewrite P Q (λ Q, P  Q))%I;
    first solve_proper; auto using iff_refl.
343
344
345
346
Qed.

(* Derived BI Stuff *)
Hint Resolve sep_mono.
347
Lemma sep_mono_l P P' Q : (P  Q)  P  P'  Q  P'.
348
Proof. by intros; apply sep_mono. Qed.
349
Lemma sep_mono_r P P' Q' : (P'  Q')  P  P'  P  Q'.
350
351
352
353
354
355
Proof. by apply sep_mono. Qed.
Global Instance sep_mono' : Proper (() ==> () ==> ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
Global Instance sep_flip_mono' :
  Proper (flip () ==> flip () ==> flip ()) (@uPred_sep M).
Proof. by intros P P' HP Q Q' HQ; apply sep_mono. Qed.
356
Lemma wand_mono P P' Q Q' : (Q  P)  (P'  Q')  (P - P')  Q - Q'.
357
358
359
360
361
Proof.
  intros HP HQ; apply wand_intro_r. rewrite HP -HQ. by apply wand_elim_l'.
Qed.
Global Instance wand_mono' : Proper (flip () ==> () ==> ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
362
363
364
Global Instance wand_flip_mono' :
  Proper (() ==> flip () ==> flip ()) (@uPred_wand M).
Proof. by intros P P' HP Q Q' HQ; apply wand_mono. Qed.
365
366
367
368
369
370
371
372
373
374
375
376

Global Instance sep_comm : Comm () (@uPred_sep M).
Proof. intros P Q; apply (anti_symm _); auto using sep_comm'. Qed.
Global Instance sep_assoc : Assoc () (@uPred_sep M).
Proof.
  intros P Q R; apply (anti_symm _); auto using sep_assoc'.
  by rewrite !(comm _ P) !(comm _ _ R) sep_assoc'.
Qed.
Global Instance True_sep : LeftId () True%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto using True_sep_1, True_sep_2. Qed.
Global Instance sep_True : RightId () True%I (@uPred_sep M).
Proof. by intros P; rewrite comm left_id. Qed.
377
Lemma sep_elim_l P Q : P  Q  P.
378
Proof. by rewrite (True_intro Q) right_id. Qed.
379
380
381
Lemma sep_elim_r P Q : P  Q  Q.
Proof. by rewrite (comm ())%I; apply sep_elim_l. Qed.
Lemma sep_elim_l' P Q R : (P  R)  P  Q  R.
382
Proof. intros ->; apply sep_elim_l. Qed.
383
Lemma sep_elim_r' P Q R : (Q  R)  P  Q  R.
384
385
Proof. intros ->; apply sep_elim_r. Qed.
Hint Resolve sep_elim_l' sep_elim_r'.
386
Lemma sep_intro_True_l P Q R : P%I  (R  Q)  R  P  Q.
387
Proof. by intros; rewrite -(left_id True%I uPred_sep R); apply sep_mono. Qed.
388
Lemma sep_intro_True_r P Q R : (R  P)  Q%I  R  P  Q.
389
Proof. by intros; rewrite -(right_id True%I uPred_sep R); apply sep_mono. Qed.
390
Lemma sep_elim_True_l P Q R : P  (P  R  Q)  R  Q.
391
Proof. by intros HP; rewrite -HP left_id. Qed.
392
Lemma sep_elim_True_r P Q R : P  (R  P  Q)  R  Q.
393
Proof. by intros HP; rewrite -HP right_id. Qed.
394
Lemma wand_intro_l P Q R : (Q  P  R)  P  Q - R.
395
Proof. rewrite comm; apply wand_intro_r. Qed.
396
Lemma wand_elim_l P Q : (P - Q)  P  Q.
397
Proof. by apply wand_elim_l'. Qed.
398
Lemma wand_elim_r P Q : P  (P - Q)  Q.
399
Proof. rewrite (comm _ P); apply wand_elim_l. Qed.
400
Lemma wand_elim_r' P Q R : (Q  P - R)  P  Q  R.
401
Proof. intros ->; apply wand_elim_r. Qed.
402
Lemma wand_apply P Q R S : (P  Q - R)  (S  P  Q)  S  R.
Ralf Jung's avatar
Ralf Jung committed
403
Proof. intros HR%wand_elim_l' HQ. by rewrite HQ. Qed.
404
Lemma wand_frame_l P Q R : (Q - R)  P  Q - P  R.
405
Proof. apply wand_intro_l. rewrite -assoc. apply sep_mono_r, wand_elim_r. Qed.
406
Lemma wand_frame_r P Q R : (Q - R)  Q  P - R  P.
407
Proof.
408
  apply wand_intro_l. rewrite ![(_  P)%I]comm -assoc.
409
410
  apply sep_mono_r, wand_elim_r.
Qed.
411
Lemma wand_diag P : (P - P)  True.
412
Proof. apply (anti_symm _); auto. apply wand_intro_l; by rewrite right_id. Qed.
413
Lemma wand_True P : (True - P)  P.
414
415
Proof.
  apply (anti_symm _); last by auto using wand_intro_l.
416
  eapply sep_elim_True_l; last by apply wand_elim_r. done.
417
Qed.
418
Lemma wand_entails P Q : (P - Q)%I  P  Q.
419
420
421
Proof.
  intros HPQ. eapply sep_elim_True_r; first exact: HPQ. by rewrite wand_elim_r.
Qed.
422
423
Lemma entails_wand P Q : (P  Q)  (P - Q)%I.
Proof. intro. apply wand_intro_l. auto. Qed.
424
Lemma wand_curry P Q R : (P - Q - R)  (P  Q - R).
425
426
427
428
429
430
Proof.
  apply (anti_symm _).
  - apply wand_intro_l. by rewrite (comm _ P) -assoc !wand_elim_r.
  - do 2 apply wand_intro_l. by rewrite assoc (comm _ Q) wand_elim_r.
Qed.

431
Lemma sep_and P Q : (P  Q)  (P  Q).
432
Proof. auto. Qed.
433
Lemma impl_wand P Q : (P  Q)  P - Q.
434
Proof. apply wand_intro_r, impl_elim with P; auto. Qed.
Ralf Jung's avatar
Ralf Jung committed
435
Lemma pure_elim_sep_l φ Q R : (φ  Q  R)  ⌜φ⌝  Q  R.
436
Proof. intros; apply pure_elim with φ; eauto. Qed.
Ralf Jung's avatar
Ralf Jung committed
437
Lemma pure_elim_sep_r φ Q R : (φ  Q  R)  Q  ⌜φ⌝  R.
438
439
440
441
442
443
444
Proof. intros; apply pure_elim with φ; eauto. Qed.

Global Instance sep_False : LeftAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.
Global Instance False_sep : RightAbsorb () False%I (@uPred_sep M).
Proof. intros P; apply (anti_symm _); auto. Qed.

445
Lemma entails_equiv_and P Q : (P  Q  P)  (P  Q).
Robbert Krebbers's avatar
Robbert Krebbers committed
446
Proof. split. by intros ->; auto. intros; apply (anti_symm _); auto. Qed.
447
Lemma sep_and_l P Q R : P  (Q  R)  (P  Q)  (P  R).
448
Proof. auto. Qed.
449
Lemma sep_and_r P Q R : (P  Q)  R  (P  R)  (Q  R).
450
Proof. auto. Qed.
451
Lemma sep_or_l P Q R : P  (Q  R)  (P  Q)  (P  R).
452
453
454
455
Proof.
  apply (anti_symm ()); last by eauto 8.
  apply wand_elim_r', or_elim; apply wand_intro_l; auto.
Qed.
456
Lemma sep_or_r P Q R : (P  Q)  R  (P  R)  (Q  R).
457
Proof. by rewrite -!(comm _ R) sep_or_l. Qed.
458
Lemma sep_exist_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
459
460
461
462
463
464
Proof.
  intros; apply (anti_symm ()).
  - apply wand_elim_r', exist_elim=>a. apply wand_intro_l.
    by rewrite -(exist_intro a).
  - apply exist_elim=> a; apply sep_mono; auto using exist_intro.
Qed.
465
Lemma sep_exist_r {A} (Φ: A  uPred M) Q: ( a, Φ a)  Q   a, Φ a  Q.
466
Proof. setoid_rewrite (comm _ _ Q); apply sep_exist_l. Qed.
467
Lemma sep_forall_l {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)   a, P  Ψ a.
468
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.
469
Lemma sep_forall_r {A} (Φ : A  uPred M) Q : ( a, Φ a)  Q   a, Φ a  Q.
470
471
472
473
474
475
476
477
478
479
480
Proof. by apply forall_intro=> a; rewrite forall_elim. Qed.

(* Always derived *)
Hint Resolve always_mono always_elim.
Global Instance always_mono' : Proper (() ==> ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.
Global Instance always_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_always M).
Proof. intros P Q; apply always_mono. Qed.

Lemma always_intro' P Q : ( P  Q)   P   Q.
481
Proof. intros <-. apply always_idemp_2. Qed.
482
Lemma always_idemp P :   P   P.
483
Proof. apply (anti_symm _); auto using always_idemp_2. Qed.
484

Ralf Jung's avatar
Ralf Jung committed
485
Lemma always_pure φ :  ⌜φ⌝  ⌜φ⌝.
486
487
488
489
490
491
Proof.
  apply (anti_symm _); auto.
  apply pure_elim'=> Hφ.
  trans ( x : False,  True : uPred M)%I; [by apply forall_intro|].
  rewrite always_forall_2. auto using always_mono, pure_intro.
Qed.
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
Lemma always_forall {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma always_exist {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof.
  apply (anti_symm _); auto using always_exist_1.
  apply exist_elim=> x. by rewrite (exist_intro x).
Qed.
Lemma always_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt always_forall. by apply forall_proper=> -[]. Qed.
Lemma always_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt always_exist. by apply exist_proper=> -[]. Qed.
Lemma always_impl P Q :  (P  Q)   P   Q.
Proof.
  apply impl_intro_l; rewrite -always_and.
  apply always_mono, impl_elim with P; auto.
Qed.
511
Lemma always_internal_eq {A:ofeT} (a b : A) :  (a  b)  a  b.
512
513
Proof.
  apply (anti_symm ()); auto using always_elim.
514
  apply (internal_eq_rewrite a b (λ b,  (a  b))%I); auto.
515
  { intros n; solve_proper. }
516
  rewrite -(internal_eq_refl a) always_pure; auto.
517
518
Qed.

519
Lemma always_and_sep_l' P Q :  P  Q   P  Q.
520
Proof. apply (anti_symm ()); auto using always_and_sep_l_1. Qed.
521
Lemma always_and_sep_r' P Q : P   Q  P   Q.
522
Proof. by rewrite !(comm _ P) always_and_sep_l'. Qed.
523
524
525
526
527
528
529
530
Lemma always_sep_dup' P :  P   P   P.
Proof. by rewrite -always_and_sep_l' idemp. Qed.

Lemma always_and_sep P Q :  (P  Q)   (P  Q).
Proof.
  apply (anti_symm ()); auto.
  rewrite -{1}always_idemp always_and always_and_sep_l'; auto.
Qed.
531
Lemma always_sep P Q :  (P  Q)   P   Q.
532
533
Proof. by rewrite -always_and_sep -always_and_sep_l' always_and. Qed.

534
Lemma always_wand P Q :  (P - Q)   P -  Q.
535
Proof. by apply wand_intro_r; rewrite -always_sep wand_elim_l. Qed.
536
Lemma always_wand_impl P Q :  (P - Q)   (P  Q).
537
538
539
540
541
Proof.
  apply (anti_symm ()); [|by rewrite -impl_wand].
  apply always_intro', impl_intro_r.
  by rewrite always_and_sep_l' always_elim wand_elim_l.
Qed.
542
Lemma always_entails_l' P Q : (P   Q)  P   Q  P.
543
Proof. intros; rewrite -always_and_sep_l'; auto. Qed.
544
Lemma always_entails_r' P Q : (P   Q)  P  P   Q.
545
546
Proof. intros; rewrite -always_and_sep_r'; auto. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
547
548
549
Lemma always_laterN n P :  ^n P  ^n  P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite always_later IH. Qed.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
Lemma wand_alt P Q : (P - Q)   R, R   (P  R  Q).
Proof.
  apply (anti_symm ()).
  - rewrite -(right_id True%I uPred_sep (P - Q)%I) -(exist_intro (P - Q)%I).
    apply sep_mono_r. rewrite -always_pure. apply always_mono, impl_intro_l.
    by rewrite wand_elim_r right_id.
  - apply exist_elim=> R. apply wand_intro_l. rewrite assoc -always_and_sep_r'.
    by rewrite always_elim impl_elim_r.
Qed.
Lemma impl_alt P Q : (P  Q)   R, R   (P  R - Q).
Proof.
  apply (anti_symm ()).
  - rewrite -(right_id True%I uPred_and (P  Q)%I) -(exist_intro (P  Q)%I).
    apply and_mono_r. rewrite -always_pure. apply always_mono, wand_intro_l.
    by rewrite impl_elim_r right_id.
  - apply exist_elim=> R. apply impl_intro_l. rewrite assoc always_and_sep_r'.
    by rewrite always_elim wand_elim_r.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
568

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
(* Later derived *)
Lemma later_proper P Q : (P  Q)   P   Q.
Proof. by intros ->. Qed.
Hint Resolve later_mono later_proper.
Global Instance later_mono' : Proper (() ==> ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.
Global Instance later_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_later M).
Proof. intros P Q; apply later_mono. Qed.

Lemma later_intro P : P   P.
Proof.
  rewrite -(and_elim_l ( P) P) -(löb ( P  P)).
  apply impl_intro_l. by rewrite {1}(and_elim_r ( P)).
Qed.

Lemma later_True :  True  True.
Proof. apply (anti_symm ()); auto using later_intro. Qed.
Lemma later_forall {A} (Φ : A  uPred M) : (  a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); auto using later_forall_2.
  apply forall_intro=> x. by rewrite (forall_elim x).
Qed.
Lemma later_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
  apply: anti_symm; [|apply exist_elim; eauto using exist_intro].
  rewrite later_exist_false. apply or_elim; last done.
  rewrite -(exist_intro inhabitant); auto.
Qed.
Lemma later_and P Q :  (P  Q)   P   Q.
Proof. rewrite !and_alt later_forall. by apply forall_proper=> -[]. Qed.
Lemma later_or P Q :  (P  Q)   P   Q.
Proof. rewrite !or_alt later_exist. by apply exist_proper=> -[]. Qed.
Lemma later_impl P Q :  (P  Q)   P   Q.
Proof. apply impl_intro_l; rewrite -later_and; eauto using impl_elim. Qed.
605
Lemma later_wand P Q :  (P - Q)   P -  Q.
606
607
608
609
610
Proof. apply wand_intro_r; rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma later_iff P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.


Robbert Krebbers's avatar
Robbert Krebbers committed
611
(* Iterated later modality *)
612
Global Instance laterN_ne m : NonExpansive (@uPred_laterN M m).
Robbert Krebbers's avatar
Robbert Krebbers committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
Proof. induction m; simpl. by intros ???. solve_proper. Qed.
Global Instance laterN_proper m :
  Proper (() ==> ()) (@uPred_laterN M m) := ne_proper _.

Lemma laterN_0 P : ^0 P  P.
Proof. done. Qed.
Lemma later_laterN n P : ^(S n) P   ^n P.
Proof. done. Qed.
Lemma laterN_later n P : ^(S n) P  ^n  P.
Proof. induction n; simpl; auto. Qed.
Lemma laterN_plus n1 n2 P : ^(n1 + n2) P  ^n1 ^n2 P.
Proof. induction n1; simpl; auto. Qed.
Lemma laterN_le n1 n2 P : n1  n2  ^n1 P  ^n2 P.
Proof. induction 1; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_mono n P Q : (P  Q)  ^n P  ^n Q.
Proof. induction n; simpl; auto. Qed.
Global Instance laterN_mono' n : Proper (() ==> ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Global Instance laterN_flip_mono' n :
  Proper (flip () ==> flip ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.

Lemma laterN_intro n P : P  ^n P.
Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.

Lemma laterN_True n : ^n True  True.
Proof. apply (anti_symm ()); auto using laterN_intro. Qed.
Lemma laterN_forall {A} n (Φ : A  uPred M) : (^n  a, Φ a)  ( a, ^n Φ a).
Proof. induction n as [|n IH]; simpl; rewrite -?later_forall; auto. Qed.
Lemma laterN_exist `{Inhabited A} n (Φ : A  uPred M) :
  (^n  a, Φ a)   a, ^n Φ a.
Proof. induction n as [|n IH]; simpl; rewrite -?later_exist; auto. Qed.
Lemma laterN_and n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_and; auto. Qed.
Lemma laterN_or n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_or; auto. Qed.
Lemma laterN_impl n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof.
  apply impl_intro_l; rewrite -laterN_and; eauto using impl_elim, laterN_mono.
Qed.
Lemma laterN_sep n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_sep; auto. Qed.
Lemma laterN_wand n P Q : ^n (P - Q)  ^n P - ^n Q.
Proof.
  apply wand_intro_r; rewrite -laterN_sep; eauto using wand_elim_l,laterN_mono.
Qed.
Lemma laterN_iff n P Q : ^n (P  Q)  ^n P  ^n Q.
Proof. by rewrite /uPred_iff laterN_and !laterN_impl. Qed.

663
(* Conditional always *)
664
Global Instance always_if_ne p : NonExpansive (@uPred_always_if M p).
665
666
667
668
669
670
671
672
673
674
675
Proof. solve_proper. Qed.
Global Instance always_if_proper p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.
Global Instance always_if_mono p : Proper (() ==> ()) (@uPred_always_if M p).
Proof. solve_proper. Qed.

Lemma always_if_elim p P : ?p P  P.
Proof. destruct p; simpl; auto using always_elim. Qed.
Lemma always_elim_if p P :  P  ?p P.
Proof. destruct p; simpl; auto using always_elim. Qed.

Ralf Jung's avatar
Ralf Jung committed
676
Lemma always_if_pure p φ : ?p ⌜φ⌝  ⌜φ⌝.
677
678
679
680
681
682
683
Proof. destruct p; simpl; auto using always_pure. Qed.
Lemma always_if_and p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_and. Qed.
Lemma always_if_or p P Q : ?p (P  Q)  ?p P  ?p Q.
Proof. destruct p; simpl; auto using always_or. Qed.
Lemma always_if_exist {A} p (Ψ : A  uPred M) : (?p  a, Ψ a)   a, ?p Ψ a.
Proof. destruct p; simpl; auto using always_exist. Qed.
684
Lemma always_if_sep p P Q : ?p (P  Q)  ?p P  ?p Q.
685
686
687
Proof. destruct p; simpl; auto using always_sep. Qed.
Lemma always_if_later p P : ?p  P   ?p P.
Proof. destruct p; simpl; auto using always_later. Qed.
688
689
Lemma always_if_laterN p n P : ?p ^n P  ^n ?p P.
Proof. destruct p; simpl; auto using always_laterN. Qed.
690
691

(* True now *)
692
Global Instance except_0_ne : NonExpansive (@uPred_except_0 M).
693
Proof. solve_proper. Qed.
694
Global Instance except_0_proper : Proper (() ==> ()) (@uPred_except_0 M).
695
Proof. solve_proper. Qed.
696
Global Instance except_0_mono' : Proper (() ==> ()) (@uPred_except_0 M).
697
Proof. solve_proper. Qed.
698
699
Global Instance except_0_flip_mono' :
  Proper (flip () ==> flip ()) (@uPred_except_0 M).
700
701
Proof. solve_proper. Qed.

702
703
704
Lemma except_0_intro P : P   P.
Proof. rewrite /uPred_except_0; auto. Qed.
Lemma except_0_mono P Q : (P  Q)   P   Q.
705
Proof. by intros ->. Qed.
706
707
708
709
710
711
712
713
714
Lemma except_0_idemp P :   P   P.
Proof. rewrite /uPred_except_0; auto. Qed.

Lemma except_0_True :  True  True.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_or P Q :  (P  Q)   P   Q.
Proof. rewrite /uPred_except_0. apply (anti_symm _); auto. Qed.
Lemma except_0_and P Q :  (P  Q)   P   Q.
Proof. by rewrite /uPred_except_0 or_and_l. Qed.
715
Lemma except_0_sep P Q :  (P  Q)   P   Q.
716
717
Proof.
  rewrite /uPred_except_0. apply (anti_symm _).
718
719
720
721
  - apply or_elim; last by auto.
    by rewrite -!or_intro_l -always_pure -always_later -always_sep_dup'.
  - rewrite sep_or_r sep_elim_l sep_or_l; auto.
Qed.
722
Lemma except_0_forall {A} (Φ : A  uPred M) :  ( a, Φ a)   a,  Φ a.
723
Proof. apply forall_intro=> a. by rewrite (forall_elim a). Qed.
724
Lemma except_0_exist_2 {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
725
Proof. apply exist_elim=> a. by rewrite (exist_intro a). Qed.
726
727
728
729
730
731
732
Lemma except_0_exist `{Inhabited A} (Φ : A  uPred M) :
   ( a, Φ a)  ( a,  Φ a).
Proof.
  apply (anti_symm _); [|by apply except_0_exist_2]. apply or_elim.
  - rewrite -(exist_intro inhabitant). by apply or_intro_l.
  - apply exist_mono=> a. apply except_0_intro.
Qed.
733
734
735
736
737
738
Lemma except_0_later P :   P   P.
Proof. by rewrite /uPred_except_0 -later_or False_or. Qed.
Lemma except_0_always P :   P    P.
Proof. by rewrite /uPred_except_0 always_or always_later always_pure. Qed.
Lemma except_0_always_if p P :  ?p P  ?p  P.
Proof. destruct p; simpl; auto using except_0_always. Qed.
739
Lemma except_0_frame_l P Q : P   Q   (P  Q).
740
Proof. by rewrite {1}(except_0_intro P) except_0_sep. Qed.
741
Lemma except_0_frame_r P Q :  P  Q   (P  Q).
742
Proof. by rewrite {1}(except_0_intro Q) except_0_sep. Qed.
743
744
745
746
747
748
749
750
751
752
753
754

(* Own and valid derived *)
Lemma always_ownM (a : M) : Persistent a   uPred_ownM a  uPred_ownM a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  by rewrite {1}always_ownM_core persistent_core.
Qed.
Lemma ownM_invalid (a : M) : ¬ {0} a  uPred_ownM a  False.
Proof. by intros; rewrite ownM_valid cmra_valid_elim. Qed.
Global Instance ownM_mono : Proper (flip () ==> ()) (@uPred_ownM M).
Proof. intros a b [b' ->]. rewrite ownM_op. eauto. Qed.
Lemma ownM_empty' : uPred_ownM   True.
755
Proof. apply (anti_symm _); first by auto. apply ownM_empty. Qed.
756
757
758
759
760
761
762
763
764
765
766
Lemma always_cmra_valid {A : cmraT} (a : A) :   a   a.
Proof.
  intros; apply (anti_symm _); first by apply:always_elim.
  apply:always_cmra_valid_1.
Qed.

(** * Derived rules *)
Global Instance bupd_mono' : Proper (() ==> ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
Global Instance bupd_flip_mono' : Proper (flip () ==> flip ()) (@uPred_bupd M).
Proof. intros P Q; apply bupd_mono. Qed.
767
Lemma bupd_frame_l R Q : (R  |==> Q) == R  Q.
768
Proof. rewrite !(comm _ R); apply bupd_frame_r. Qed.
769
Lemma bupd_wand_l P Q : (P - Q)  (|==> P) == Q.
770
Proof. by rewrite bupd_frame_l wand_elim_l. Qed.
771
Lemma bupd_wand_r P Q : (|==> P)  (P - Q) == Q.
772
Proof. by rewrite bupd_frame_r wand_elim_r. Qed.
773
Lemma bupd_sep P Q : (|==> P)  (|==> Q) == P  Q.
774
775
776
777
778
779
Proof. by rewrite bupd_frame_r bupd_frame_l bupd_trans. Qed.
Lemma bupd_ownM_update x y : x ~~> y  uPred_ownM x  |==> uPred_ownM y.
Proof.
  intros; rewrite (bupd_ownM_updateP _ (y =)); last by apply cmra_update_updateP.
  by apply bupd_mono, exist_elim=> y'; apply pure_elim_l=> ->.
Qed.
780
Lemma except_0_bupd P :  (|==> P)  (|==>  P).
781
Proof.
782
  rewrite /uPred_except_0. apply or_elim; auto using bupd_mono.
783
784
785
786
  by rewrite -bupd_intro -or_intro_l.
Qed.

(* Timeless instances *)
787
788
Global Instance TimelessP_proper : Proper (() ==> iff) (@TimelessP M).
Proof. solve_proper. Qed.
Ralf Jung's avatar
Ralf Jung committed
789
Global Instance pure_timeless φ : TimelessP (⌜φ⌝ : uPred M)%I.
790
791
792
793
794
795
796
Proof.
  rewrite /TimelessP pure_alt later_exist_false. by setoid_rewrite later_True.
Qed.
Global Instance valid_timeless {A : cmraT} `{CMRADiscrete A} (a : A) :
  TimelessP ( a : uPred M)%I.
Proof. rewrite /TimelessP !discrete_valid. apply (timelessP _). Qed.
Global Instance and_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
797
Proof. intros; rewrite /TimelessP except_0_and later_and; auto. Qed.
798
Global Instance or_timeless P Q : TimelessP P  TimelessP Q  TimelessP (P  Q).
799
Proof. intros; rewrite /TimelessP except_0_or later_or; auto. Qed.
800
801
802
803
804
Global Instance impl_timeless P Q : TimelessP Q  TimelessP (P  Q).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, impl_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
805
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
806
807
  by rewrite assoc (comm _ _ P) -assoc !impl_elim_r.
Qed.
808
Global Instance sep_timeless P Q: TimelessP P  TimelessP Q  TimelessP (P  Q).
809
Proof. intros; rewrite /TimelessP except_0_sep later_sep; auto. Qed.
810
Global Instance wand_timeless P Q : TimelessP Q  TimelessP (P - Q).
811
812
813
814
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono, wand_intro_l; first done.
  rewrite -{2}(löb Q); apply impl_intro_l.
815
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
816
817
818
819
820
821
822
823
824
  rewrite -(always_pure) -always_later always_and_sep_l'.
  by rewrite assoc (comm _ _ P) -assoc -always_and_sep_l' impl_elim_r wand_elim_r.
Qed.
Global Instance forall_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> HQ. rewrite later_false_excluded_middle.
  apply or_mono; first done. apply forall_intro=> x.
  rewrite -(löb (Ψ x)); apply impl_intro_l.
825
  rewrite HQ /uPred_except_0 !and_or_r. apply or_elim; last auto.
826
827
828
829
830
831
  by rewrite impl_elim_r (forall_elim x).
Qed.
Global Instance exist_timeless {A} (Ψ : A  uPred M) :
  ( x, TimelessP (Ψ x))  TimelessP ( x, Ψ x).
Proof.
  rewrite /TimelessP=> ?. rewrite later_exist_false. apply or_elim.
832
  - rewrite /uPred_except_0; auto.
833
834
835
  - apply exist_elim=> x. rewrite -(exist_intro x); auto.
Qed.
Global Instance always_timeless P : TimelessP P  TimelessP ( P).
836
Proof. intros; rewrite /TimelessP except_0_always -always_later; auto. Qed.
837
838
Global Instance always_if_timeless p P : TimelessP P  TimelessP (?p P).
Proof. destruct p; apply _. Qed.
839